Lessons to be learnt from the French nuclear program

From dreams to promises... of disillusions

Yves Marignac, MSc.
Director of WISE-Paris

Main author of Global Chance’s report Nuclear power: the great illusion, Nov. 2008

Context of a so-called “nuclear renaissance”

A “nuclear path” for countries’
energy security and climate change policies

France’s stance as world champion of nuclear power,
promoting its “nuclear model” everywhere

Why a Global Chance report “Nuclear power: the great illusion”?

A group among few French independent experts
on nuclear and energy issues

Gather its fact-based, point-by-point analysis
of the French nuclear program

Publish as an alternative to the widespread official information
Contents:

Assessing the French nuclear program...

Background
History, status and projects

Effectiveness
(1) Energy security
(2) Climate change policy
(3) Industrial policy

Safety
(1) Risk of accident
(2) Waste management
(3) Security / proliferation

Economics
(1) Direct / indirect costs
(2) Global economics

Democracy

Lessons to be learnt

Assessing the French nuclear program...

Background
History, status and projects
Nuclear power: the great illusion

A long history:
- From the beginning: France part of the scientific adventure of nuclear energy
- After World War II: political consensus on a nuclear program (weapons then energy) to restore international role and develop national independency
- After oil shocks: nuclear energy to become the main driver of energy (and now climate) policy

Current status:
An industry covering all stages of the “fuel cycle”
- 58 PWRs in operation (63.2 GWe)
- Close to 100 other nuclear facilities (incl. other reactors, research, and fuel cycle facilities)

Main players:
- **CEA (1946)** - Public R&D up to industrial stage (military and civilian prog.)
- **COGEMA (1976)** - Private status of CEA industrial activities
- **AREVA (2001)** - Merging of COGEMA and reactors building/service FRAMATOME
- **ANDRA (1991 from CEA)** - Public agency in charge of final radwaste management
- **IRSN (1998-2002 from CEA)** - Public expertise on nuclear risks
- **ASN (2006 from Gov. department)** - Nuclear safety authority
Assessing the French nuclear program...

Background

Effectiveness
(1) Energy security

Government & Industry:
France’s nuclear program is key to guarantee its energy security.
The development of nuclear power raised France’s energy independency up to a level of 50%.

Nuclear energy in French energy consumption

Nuclear ~ 80% of France’s electricity output, an unparalleled contribution...
...but electricity ~ 20% of France’s final energy consumption
(versus oil ~ 50% and gas ~ 20%)
Limited impact of the substitution policy on the supply side (e.g. not on transports)

Lower efforts on more effective action on the demand side (e.g. oil in transports)

Final energy consumption in France, 1970-2007

- Minimum 1985: Oil consumption ~80% of 1973
- 2006-2007: Oil consumption back to 1973 level

Official energy independency largely overestimated

\[
\text{Energy independency} = \frac{\text{Domestic energy production}}{\text{Domestic energy consumption}} \approx 50\%
\]

<table>
<thead>
<tr>
<th>Calculation</th>
<th>1973</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Primary energy</td>
<td>25%</td>
<td>51%</td>
</tr>
<tr>
<td>Including 2/3rd of energy wasted as heat by NPPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) Final energy</td>
<td>30%</td>
<td>38%</td>
</tr>
<tr>
<td>Discounting wasted heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) B minus losses</td>
<td>30%</td>
<td>33%</td>
</tr>
<tr>
<td>Discounting own consumption (enrichment, grid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) C minus uranium imports</td>
<td>30%</td>
<td>15%</td>
</tr>
<tr>
<td>Domestic mining of uranium ended in 2001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Observatoire de l’énergie, DGEMP, 2008
(In)security of domestic supply

- High dependency to a sensitive technology
- Vulnerability of a highly centralized grid (25% of population hit by blackout of 1999 tempest)
- Vulnerability of nuclear power plants to climatic events (tempest, flooding, heat)

Assessing the French nuclear program...

Background

Effectiveness

1. Energy security
2. Climate change policy

Government & Industry:
Nuclear energy is key to France's GHG emissions low record
Pursuing is core of France's climate change policy
The limits of the substitution logic

France’s CO2 emissions, past evolution (1970-2007) and “business as usual” trend (2008-2030)

1. Period 1970-1990:
- Impact of nuclear substitution
- But most impact due to demand side policy (following oil shocks)
- Significant decrease of emissions

2. Period 1990-2010 (Kyoto):
- Target only stability (because emissions already lower than others)
- No more impact of substitution but release of energy efficiency policies (following counter oil shock)
- Trend to miss no increase target
Nuclear power: the great illusion

The limits of the substitution logic

France’s CO2 emissions, past evolution (1970-2007) and “business as usual” trend (2008-2030)

![Graph showing CO2 emissions from 1970 to 2030]

3. Period 2010-2030 (post-Kyoto):
Following the trend:
- maintaining nuclear effort
 (52 GWe in replacement to maintain total up at 65 GWe)
- letting energy demand grow
 Nuclear won’t prevent increase

Source: Observatoire de l’énergie, DGEMP, 2008

Nuclear energy and long term CO2 emissions

France’s medium and long term commitments:
 (and 20% energy efficiency / trend, and 20% renewables in consumption)
- French energy law (2005): 4-fold division by 2050 (“factor 4”, or -75%)

Government scenarios:
- acknowledge the prime role of energy demand decrease
 (low carbon supply only secondary)
- take pursuing or increasing the nuclear program as basic assumption
- consider the development of renewables as complimentary

Alternative scenarios:
- search for further energy efficiency and energy sufficiency potentials
- take the liberty to try not replacing ageing reactors by new ones
- embed further development of renewables as prioritary
Nuclear energy and long term CO2 emissions

France’s medium and long term commitments:

 (and 20% energy efficiency / trend, and 20% renewables in consumption)
- French energy law (2005): 4-fold division by 2050 (“factor 4”, or -75%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>+1%</td>
<td>0%</td>
<td>n.d</td>
<td>428.7 (78.3%)</td>
</tr>
<tr>
<td>Ref. Markal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol. Markal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. Markal</td>
<td>-3%</td>
<td>+13%</td>
<td>n.d</td>
<td>431.3 (70.6%)</td>
</tr>
<tr>
<td>Vol. Markal</td>
<td>-23%</td>
<td>-6.6%</td>
<td>10.4%</td>
<td>549 (82.1%)</td>
</tr>
<tr>
<td>Ref. MedPro-Poles</td>
<td>+1.5%</td>
<td>+1%</td>
<td>8.1%</td>
<td>431.3 (70.6%)</td>
</tr>
<tr>
<td>Vol. MedPro-Poles</td>
<td>-21%</td>
<td>-16%</td>
<td>9.8%</td>
<td>439 (65.8%)</td>
</tr>
<tr>
<td>négawatt</td>
<td>-26%</td>
<td>-18%</td>
<td>19%†</td>
<td>206 (53.7%)</td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. Markal</td>
<td>+2.5%</td>
<td>+35%</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>Vol. Markal</td>
<td>-52%</td>
<td>0%</td>
<td>15.4%</td>
<td>731.6 (78.4%)</td>
</tr>
<tr>
<td>Vol. MedPro-Poles</td>
<td>-58%</td>
<td>-50%</td>
<td>16.0%</td>
<td>453 (59.8%)</td>
</tr>
<tr>
<td>négawatt</td>
<td>-75%</td>
<td>-41%</td>
<td>70%†</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Conclusions from prospective comparison:

- No nuclear scenario meeting 4-fold division target:
 High level of nuclear power won’t bring French CO2 emissions
down to sustainable levels

- Demand side policy is more effective, supply side policy can’t be enough:
 Key to limit emissions is energy efficiency, renewables come second

- Scenarios with nuclear power deliver less:
 Comparison suggests an adverse effect of nuclear lock-in
against appropriate shifts in the energy system
Assessing the French nuclear program...

Background

Effectiveness
(1) Energy security
(2) Climate change policy
(3) Industrial policy

Government & Industry:
Ranking top success of the French industry
France must take responsibility and spread its technologies and skills throughout the world

French nuclear industry’s troubled history

• picked wrong technologies, ended up buying foreign ones
 US license for PWR reactors, Urenco’s license for centrifugation enrichment…

• maintained some options even when rationale lost, rather than confessing fault
 pursuing reprocessing and pay overcost although the initial plan of a “plutonium industry” is dead

• developed structural mishap based on wrong planning
 e.g. in 1973, projected 750 TWh of electricity in France by 2000, turned 430 TWh

• missed by far its exportation targets
 aimed to build 1 reactor abroad for 1 constructed in France, only exported 9 reactors before EPR

• systematically fell short of meeting its own performance objectives for new projects, e.g.
 - 4 last reactors built took 10.5 to 14.5 years against initial plan for 5 years
 - average load factor reaches 75 to 80% against initial plan for 85 to 90%
 - EPR construction work far beyond schedule
 In Finland, 2 years late after 2.5 years work
 In France, estimated over 1 year after 1.5 year
Assessing the French nuclear program…

Background

Effectiveness

Safety

(1) Risk of accident

Government & Industry:

France’s nuclear industry much more controlled than other dangerous activity

French nuclear facilities amongst the safest in the world

A Chernobyl-type accident is below probability

Increasing safety concerns with French nuclear facilities

• 46 of 58 reactors ordered before TMI (1979), only 2 after Chernobyl (1986)
• French safety authority, 1995: 58 reactors would not be licensed under new criteria
• a series of “near miss” or warning signals through the years covering a whole range of root causes (e.g. Bugey 1984, Le Blyais 1999)
• new concern: growing economic pressure, ageing reactors, loss of competencies
• shows in a global increase of “significant events” in the past decade

Source: Residual Risk report, 2007, based on IRSN
Assessing the French nuclear program...

Background

Effectiveness

Safety
(1) Risk of accident
(2) Waste management

Government & Industry:
Reprocessing developed as most sustainable policy for radioactive waste management

Projects well on track for long-lived waste disposal in geological site

The real complexity behind “recycling”
Nuclear power: the great illusion

WiseParis

www.global-chance.org

Piling up of radioactive waste and nuclear materials

Inventory of waste arising from the French fuel cycle, by status of storage or disposal (in %)

- 2 832 m³
- 39 410 m³
- 11 214 m³
- 291,165 m³
- 344,621 m³

- 805
- 29,564
- 160,049
- 11 214
- 59,862
- 17,546
- 160,049

> 20% of short-lived low-level waste

All long lived-waste

- Accumulation of “reusable” nuclear materials with only partial or no use
 Including spent fuel (> 8,000 tons), separated plutonium, depleted uranium, mining residues
- First decommissioning projects facing unplanned difficulties

Source: WISE-Paris, based on ANDRA’s national inventory, 2006
Nuclear power: the great illusion
www.global-chance.org

- Existing disposal face technical problems (leakage at CSM, near La Hague, 1966-2003)
- Solutions remain to be found / demonstrated / implemented for most categories
- First law on radioactive waste management passed in 2006, deadlines already beaten (LL-LLW already 6 years beyond schedule, 2019 instead of 2013)

<table>
<thead>
<tr>
<th>Period Activity</th>
<th>LL - Long-lived</th>
<th>SL - Short-lived</th>
<th>VSL - Very short-lived</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level</td>
<td>≥ 10⁸ Bq/g</td>
<td>Under study</td>
<td>Art. 3 of the law of 28 June 2006</td>
</tr>
<tr>
<td>Intermediate</td>
<td>≤ 10⁸ Bq/g</td>
<td>Art. 3 of the law of 28 June 2006</td>
<td></td>
</tr>
<tr>
<td>Low Level</td>
<td>≤ 10⁷ Bq/g</td>
<td>Study of</td>
<td>Surface disposal(9)</td>
</tr>
<tr>
<td>Very Low Level</td>
<td>≤ 10⁷ Bq/g</td>
<td>Dedicated surface disposal</td>
<td>1 site in operation: Morvilliers</td>
</tr>
</tbody>
</table>

a. With the exception of specific waste, e.g. contaminated with tritium, for which dedicated management is still being studied.

Source: based on PINGMOC, 2007-8

Assessing the French nuclear program...

Background

Effectiveness

Safety
(1) Risk of accident
(2) Waste management
(3) Security / proliferation

Government & Industry:
French nuclear reactors technologies (PWRs) are non-proliferating
France’s duty to help countries access nuclear energy for collective security and shared prosperity
France, pyromaniac fireman of proliferation

• Piling-up of plutonium:
 >300 tons accumulated by the end of 2008
 of which (declared as of the end of 2007):
 - 52.4 tons of French separated plutonium
 (makes EDF n°1 producer in the world)
 - 29.7 tons of foreign origin

 Usable for bombs - denied until 2006 by AREVA
 Stock in La Hague more than 5,000 times IAEA’s
 called “significant quantity” (8 kg)

 Bad signal on the international scene

• Selling nuclear technology:
 France helped military program of several countries (Israel, Iraq, South Africa…)
 Now prepared to sell its civilian technology to any country (Algeria, Libya…)

Assessing the French nuclear program…

Background

Effectiveness

Safety

Economics
 (1) Direct / indirect costs

Government & Industry:
Nuclear electricity is cheaper
than any other technology

French electricity prices are lowest in Europe
thanks to nuclear reactors
French electricity prices show no clear advantage

- French prices within medium range in EU
- Predominant regulated market prevents real costs to reflect in tariffs
- Promotion of electric consumption (e.g. for heating) leads to average household consumption twice the EU “standard”

Electricity prices for households in EU-25, as of 1st January 2007

Source: Observatoire de l’énergie, based on Eurostat, 2007

Real costs of nuclear power: unclear and escalating

- No learning curve
 Historical record of projected costs escalating, still more slowly than real costs
- No transparency
 French Government not publishing data anymore ("commercial sensitivity")
- EPR costs climbing
 Latest official estimates:
 - Finland (Olkiluoto): from €3 bn up to €5.3 bn
 - France (Flamanville): from 28.4 to 54 c€/kWh

French EPR cost estimates

<table>
<thead>
<tr>
<th>Construction Cost (€/kW)</th>
<th>Production Cost (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEMP 2003*</td>
<td>1043</td>
</tr>
<tr>
<td>EDF 2005</td>
<td>1043</td>
</tr>
<tr>
<td>EDF 2006</td>
<td>1043</td>
</tr>
<tr>
<td>EDF 2008 - 1st EPR</td>
<td>1043</td>
</tr>
<tr>
<td>EDF 2008 - 2nd EPR</td>
<td>1043</td>
</tr>
</tbody>
</table>

- The Government estimate of DGEMP 2003 served as a basis for the political decision in 2005

Indirect costs or hidden subsidies:

- R&D program
- Structural costs (grid…)
- Liabilities / major accident
- Economic burden of reprocessing
- Future long term costs (waste, decommissioning)
- Security costs (guards, etc.)
Assessing the French nuclear program...

Background

Effectiveness

Safety

Economics
(1) Direct / indirect costs
(2) Global economics

Government & Industry:
Nuclear energy key in France’s competitiveness
It benefits France’s commercial balance through electricity exports and reduction of oil imports

No evidence of any impact on French global economics

- Comparison with other countries: no breakthrough on global indicators (GDP...)
- Commercial balance still heavily dependent on oil
 2008: positive at €3.3 billion without energy, record at €58.7 billion with energy

Source: Observatoire de l’énergie, based on Eurostat, 2008
Assessing the French nuclear program...

Background
Effectiveness
Safety
Economics
Democracy

Government & Industry:
Large support in French society to the continuation of the nuclear program
The French nuclear industry builds confidence through full transparency

Confiscated decisions and public mistrust

- Decisions made by a small elite in Government and industry (Corps des mines)
 Lack of real external assessment / public review processes (ex-ante or ex-post)
- No public confidence in official statements about nuclear risks

- No strong public support:
 European Commission poll in 2007 on the role of nuclear power in climate change policy:
 - 28% French to increase
 - 59% to decrease
 (closed to EU average, resp. 30% and 61%)

Source: based on 2007 IRSN Barometer (survey of November 2006)
Assessing the French nuclear program…

Background
Effectiveness
Safety
Economics
Democracy

Lessons to be learnt

Main conclusions from the French nuclear experience

- Systematic difficulties:
The French nuclear program has constantly failed to meet its own set targets
- Structural problems:
The French nuclear program creates a lock-in of the energy system while creating new risks and not showing positive impact on global economics
- Deficient assessment:
Pursuing of the program is based on an image disconnected from reality

Main lessons for the United States

Developing a nuclear program based on the “French model” would:

- Introduce practices to the US energy system that conflict with its fundamentals
- Not ease significantly the energy/climate problems
- Increase specific problems arising from specific nuclear risks
- Make it more difficult to develop much more effective solutions
Thanks for your attention!

Further contact:

Yves MARIGNAC Director of WISE-Paris
Mob. +33.6.07.71.02.41
E-mail: yves.marignac@wise-paris.org