As part of its plan to transport high-level radioactive waste to Western Shoshone Indian land at Yucca Mountain, Nevada, the U.S. Department of Energy (DOE) proposes up to 334 barge shipments carrying giant high-level radioactive waste containers on the James River from the Surry nuclear power plant in Gravel Neck, Virginia to the Port of Norfolk. (See the second page of this fact sheet for a map of the proposed route). The James River, of course, is the lifeblood of numerous communities, including Newport News and Virginia Beach.

Accidents happen. But what if high-level radioactive waste is involved? Each barge sized container would hold the long-lasting radiological equivalent of 200 Hiroshima-sized bombs. But U.S. Nuclear Regulatory Commission (NRC) design criteria for atomic waste transport containers are woefully inadequate. Rather than full-scale physical safety testing, scale model tests and computer simulations are all that is required.

The underwater immersion design criteria are meant to “test” (on paper, at least) the integrity of a slightly damaged container submerged under 3 feet of water for 8 hours. An undamaged cask is “tested” (on computers, at least) for a 1 hour submersion under 656 feet of water.

But if a cask were accidentally immersed under water, or sunk by terrorists, is it reasonable for NRC to assume that the cask would only be slightly damaged, or not damaged at all? Given that barge casks could weigh well over 100 tons (even up to 140 tons), how can NRC assume that they could be recovered from underwater within 1 hour, or even within 8 hours? Special cranes capable of lifting such heavy loads would have to be located, brought in, and set up. Given the James River’s historic significance, as well as the U.S. Navy installations and tourist destinations around Norfolk, the potential for terrorist attack on these barge shipments is increased.

The dangers of nuclear waste cask submersion underwater are two fold. First, radioactivity could leak from the cask into the water. Given high-level atomic waste’s deadliness, leakage of even a fraction of a cask’s contents could spell unprecedented catastrophe for points downstream along the James River. Second, enough fissile uranium-235 and plutonium is present in high-level atomic waste that water, with its neutron moderating properties, could actually cause a nuclear chain reaction to take place within the cask. Such an inadvertent criticality event in Sept. 1999 at a nuclear fuel factory in Japan led to the deaths of two workers; many hundreds of nearby residents, including children, received radiation doses well above safety standards.

STOP THE ACCIDENT BEFORE IT HAPPENS!

Don’t let D.O.E. and N.R.C. get away with shipping high-level radioactive wastes on the James River!

Urge Your U.S. Senators and Representative to oppose the Yucca Mountain dump plan!

Call their offices via the U.S. Capitol Switchboard: 202.224.3121.

For more information, contact Nuclear Information & Resource Service, 202.328.0002, nirsnet@nirs.org, www.nirs.org
Barge Shipments of High-Level Radioactive Waste on the James River
Proposed by U.S. Dept. of Energy under its Yucca Mountain Plan

Map taken from Figure J-9, Routes analyzed for barge transportation from sites to nearby railheads, page J-78.

<table>
<thead>
<tr>
<th>Nuclear Reactor</th>
<th>Location</th>
<th>Number of Shipments Proposed</th>
<th>Barges offloaded at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surry 1</td>
<td>Gravel Neck, VA</td>
<td>Up to 332</td>
<td>Port of Norfolk, VA</td>
</tr>
<tr>
<td>Surry 2</td>
<td>Gravel Neck, VA</td>
<td>Up to 2</td>
<td>Port of Norfolk, VA</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>Up to 334</td>
<td></td>
</tr>
</tbody>
</table>

Table taken from Table J-27, Barge shipments and ports, page J-83.