MARYLAND'S RENEWABLE GRID OF THE FUTURE

Prepared for GRID-OF-THE-FUTURE conference at Johns Hopkins University, Baltimore MD

January 29, 2016 Baltimore, MD Arjun Makhijani, Ph.D., President, Institute for Energy and Environmental Research www.ieer.org arjun@ieer.org

Renewable Maryland Project: energy sector goals

- Affordable for all
- Renewable
- Resilient
- 🗆 Reliable
- Efficient
- Democratized consumer choice, transparent, equal access to choices

Maryland's energy system: 2011

BASELINE YEAR FOR ANALYSIS

Overview of Maryland energy system

Present energy system

- Wasteful, polluting, mostly functioning; not robust or resilient
- Maryland sends \$9 billion to \$12 billion per year out of state to import fuels (oil, natural gas, imported electricity): we are, in effect, exporting jobs
- Significant water impacts

Today's energy system is wasteful

Example 1: Thermal electricity generation

Detail on Susquehanna River water use

- About three-fourths of the water consumption is for thermal electricity generation (mainly coal and nuclear) – about 17 fossil and nuclear generating stations in the basin (to confirm)
- Connected to future security of water supply
- Water flow in drought years is critical for Chesapeake Bay
- Maryland has an interest in leading by example and persuading development of nonthermal generation upstream on the Susquehanna River

Today's energy system is wasteful

Example 2: Point of use in homes and businesses

Today's energy system is wasteful

Example 3:

Typical gasoline vehicle: 75 to 82 percent waste

(not including oil production, pipeline, and refining losses)

In this figure, they are accounted for as part of the engine and parasitic losses.

Heating & cooling leakage in homes

Net zero homes and passive heating and cooling energy systems can reduce leakage ~ 70 percent

Maryland primary energy use, 2011 (responsible for ~92 million metric tons CO2)

2011 Total Primary Energy Use, trillion Btu

Energy Equity and Justice

HIGH ENERGY BURDENS = ILL-HEALTH AND HOMELESSNESS

IMPOSSIBE CHOICES: RENT, MEDICINE OR HEAT

High eviction and foreclosure rates

High public shelter costs

High health costs

Renter-landlord issues

Renters often trapped in low efficiency homes

Low-income homes are relatively inefficient

10 areas of highest need where >10% households apply for energy assistance

Low income households get almost no access to solar (CA, AZ, NJ research)

Note: APS = Arizona Public Service; CSI = California Solar Initiative; NJCEP = New Jersey's Clean Energy Program). Source: Recreated by IEER from Hernandez 2013, Figure 3 (p. 4). This report, Solar Power to the People: The Rise of Rooftop Solar Among the Middle Class, by Mari Hernandez, was published by the Center for American Progress.

GRID OF THE FUTURE

Affordable, Democratized, Near-zero Emissions, Equitable, Resilient

Maryland's main renewable energy sources: wind and solar

We have 10x more than needed: Supply \sim 1 Million GWh/yr while 2011 demand was only \sim 69 thousand GWh/year

The transition in brief

- Eliminate energy waste systematically
- Use mostly wind and solar generation
- All road transport goes electric
- HVAC is by efficient electric heat pumps
- Result: energy consumption goes down by ~60 percent even as the economy grows by 2x

24 hours, typical winter day

24 hours, typical summer day

Life would be simpler with economical seasonal heat and coldness storage technologies

The energy system

Now:

Where it needs to be:

Current Grid vs Smart Grid

	Current Grid	Smart Grid	Comments
Communications	None or one-way; typically not real- time	Two-way, real-time	Customer needs smart devices and real-time information
Customer interaction	Limited	Extensive	
Metering	Electro- mechanical	Digital (enabling real- time pricing and net metering)	Affordable bills will require real time control of consumption and ownership of energy production

GOTF Features

Renewable, Resilient, Democratized

- Solar and wind mainstays of energy system
- Increase efficiency
- Storage, CHP, microgrids
- Demand response
- Control consumption to minimize bills
- Electrified transportation and HVAC
- Provide services to the grid, including via V2G and local storage ownership

Affordable Energy Program

- □ Limit bills to 6 percent of income
- Lower cost of energy supply with solar (Photo: low-income housing, Seattle)
- Reduce energy needs by efficiency increases
- Reduce costs in the long-term and reduce need for assistance.
- Better health, lower emissions, lower cost
- Start creating jobs in solar and efficiency energy in areas with higher proportions of low-income households
- Needs action by Public Service Commission and legislature

Energy Justice and GOTF

- Universal solar access and universal internet access
- Once Affordable Energy Program in place, assistance can be in the form of investment: smart appliances + smart devices (tablets, phones, etc.) to optimize bills
- Large collateral benefits of internet access education, work, economic opportunity
- Electric vehicles: lower fuel and maintenance cost + V2G revenue potential
- Infrastructure in low income areas: Building community solar + electric vehicle charging + distributed stationary storage
- □ Financing: PACE, Green Bank, On-bill financing
- Electrified public transport like electric bus rapid transit?

Oil lamps to electric bulbs: ~20 or 30 years

Horses to petroleum tractors: 30 or 40 years

This transformation can be done by 2050, possibly earlier

Conclusions

- We can have a healthy, affordable, reliable, and emissions-free energy system by 2050.
- Policy certainty GHG reduction and efficiency targets, etc. – will allow for investment on the scale needed
- If we are farsighted enough, we can bring large numbers of industrial jobs to Maryland
- Maryland must really lead to have a good chance of persuading industry to set up here rather than elsewhere.

Thank you & Questions

Arjun Makhijani, Ph.D., President, Institute for Energy and Environmental Research

> 6935 Laurel Ave, Suite 201 Takoma Park, MD 20912 (301) 270-5500

> > www.ieer.org

arjun@ieer.org