УТВЕРЖДАЮ

Главный инженер ОП «Южно-Украинская АЭС» **УТВЕРЖДАЮ**

Член правления, Директор дивизии Целостности и технического инжиниринга ИЯИ Ржеж

_____ В. И. Кузнецов

«___»____ 2011 г.

_____ Владимир Стратил

«____»_____ 2011 г.

ОТЧЕТ

по контракту № 02-2007 от 01.02.2008

Оценка технического состояния и продление срока эксплуатации реактора энергоблока №1 ОП Южно - Украинской АЭС

(этап № 5.1.3)

ОЦЕНКА СТАТИЧЕСКОЙ И ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ ЭЛЕМЕНТОВ КОРПУСА РЕАКТОРА НА СВЕРХ ПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ

ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ РЖЕЖ., ОТДЕЛЕНИЕ ЦЕЛОСТНОСТИ И ТЕХНИЧЕСКОГО ИНЖИНИРИНГА

250 68 РЖЕЖ

ОТЧЕТ

ОЦЕНКА СТАТИЧЕСКОЙ И ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ ЭЛЕМЕНТОВ КОРПУСА РЕАКТОРА НА СВЕРХ ПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ

Отчет №:		Издание:	Ревизия:	Количество страниц:	Экземпляр №:			
DITI 2301/71		1	1	78				
	Должность	Фамилия		подпись	Дата			
Авторы:		Владислав Пи	штора		2011			
		Давид Стаха			2011			
		Онрей Шимек	:		2011			
Согласовал:	Директор дивизии	Владимир Стр	атил		2011			
Распределение	2:							
Должность		Фамилия		Экземпляр №:	Экземпляр №:			
Авторы		Владислав Пи	штора	1				
		Давид Стаха		2				
		Онрей Шимек		3	3			
Заказчик				4				
Архив ИЯИ		Гана Вышино	ва	5				

ЛИСТ СОГЛАСОВАНИЯ

Должность	Подпись	Дата	И.О.Фамилия
ЗГИТИ			И.В. Кравченко
ЗГИ по ЯРБ			Д.А. Соколов
Нач. СНРиПЭ			А.А. Манузин
Нач. РЦ-1			С.В. Мартыщенко
Нач. СКМ			А.В. Бажуков
Нач. СНИО			Д.Ш. Альмикеев
Нач. ОПЭСЭ			В.В. Круглов

СОДЕРЖАНИЕ

Πł	ЕРЕЧЕНЬ СОКРАЩЕНИЙ	. 5
Π	ЕРЕЧЕНЬ ОБОЗНАЧЕНИЙ	. 6
BE	ВЕДЕНИЕ	.7
1	ПРОЕКТНЫЕ РЕЖИМЫ, ВЛИЯЮЩИЕ НА ЦИКЛИЧЕСКУЮ	
	ПРОЧНОСТЬ ЭЛЕМЕНТОВ КОРПУСА РЕАКТОРА, И ИХ ПРОГНОЗ НА	
	СВЕРХПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ	. 8
2	РЕЗУЛЬТАТЫ РАСЧЕТОВ ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ НА	
	СВЕРХПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ	18
2.1	Результаты расчетов циклической прочности цилиндрической части	
	корпуса реактора, включая днище и кольцо разделительное	19
2.2	Результаты расчетов циклической прочности узла уплотнения реактора 2	26
2.3	В Результаты расчетов циклической прочности патрубков ГЦТ и САОЗ	31
2.4	Результаты расчетов циклической прочности патрубка КИП 4	42
2.5	Результаты расчетов циклической прочности фланцевого соединения	
	патрубка СУЗ	47
2.6	Результаты расчетов циклической прочности фланцевого соединения	
	патрубка КНИ	52
2.7	Результаты расчетов циклической прочности фланцевого соединения	
	патрубка ТК	57
2.8	В Результаты расчетов циклической прочности крышки с патрубками	61
2.9	Результаты расчетов циклической прочности фланцевого соединения	
	патрубка воздушника	71
3	ЗАКЛЮЧЕНИЕ	75
CI	ІИСОК ЛИТЕРАТУРЫ	77

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

- АПЭН аварийный питательный электронасос
- АС аварийная ситуация
- АЭС атомная электрическая станция
- БРУ-А быстродействующая редукционная установка сброса пара в атмосферу
- БРУ-К быстродействующая редукционная установка сброса пара в конденсатор
- ВК визуальный контроль
- ВПЭН вспомогательный питательный электронасос
- ВТК вихретоковый контроль
- ГРР главный разъем реактора
- ГЦН главный циркуляционный насос
- ГЦТ главный циркуляционный трубопровод
- Ду условный диаметр
- КД компенсатор давления
- КИП контрольный измерительный прибор
- КК капиллярный контроль
- КНИ канал нейтронных измерений
- КР корпус реактора
- ННЭ нарушение нормальной эксплуатации
- ОР орган регулирования
- ПГ парогенератор
- РУ реакторная установка
- САОЗ система аварийного охлаждения активной зоны
- СУЗ система управления и защиты
- ТГ турбогенератор
- ТК температурный контроль
- УЗК ультразвуковой контроль
- УПЗ ускоренная предупредительная защита

ПЕРЕЧЕНЬ ОБОЗНАЧЕНИЙ

a	_	коэффициент накопленного усталостного повреждения	[—]
ϕ_s	_	коэффициент снижения циклической прочности	[—]
n _N	_	коэффициент запаса прочности по количеству циклов	[—]
n _σ	_	коэффициент запаса прочности по напряжениям	[—]
K_{σ}	_	коэффициент концентрации напряжений в резьбовых участках	[—]

введение

В отчете представлена оценка прочности элементов корпуса реактора энергоблока № 1 ОП ЮУАЭС на сверхпроектный срок эксплуатации – 60 лет.

Поскольку статическая прочность не зависит от срока эксплуатации, для оценки прочности элементов корпуса реактора в сверхпроектный срок достаточно выполнить оценку циклической прочности.

Оценка циклической прочности выполнена в соответствии с требованиями норм ПНАЭ Г-7-002-86 [1].

Оценка выполнена для элементов корпуса реактора, приведенных в таблице 1.

Таблица 1 – Перечень элементов корпуса реактора, подлежащих оценке циклической прочности в сверхпроектный период

№ п.п.	Наименование элемента	Расчет на проектный период эксплуатации
1	цилиндрическая часть корпуса реактора, включая	[2]
	днище и кольцо разделительное	
2	узел уплотнения реактора	[3]
3	патрубки ГЦТ и САОЗ	[4]
4	патрубок КИП	[5]
5	фланцевое соединение патрубка СУЗ	[6]
6	фланцевое соединение патрубка КНИ	[7]
7	фланцевое соединение патрубка ТК	[8]
8	крышка с патрубками СУЗ (ТК, КНИ) и воздушника	[9]
9	фланцевое соединение патрубка воздушника	[10]

Оценка выполнена на основании моделей, разработанных для оценки статической и циклической прочности отдельных элементов корпуса реактора для проектного срока эксплуатации (40 лет) в рамках предыдущих этапов контракта [2-10].

На основании анализа прошедших эксплуатационных режимов (выполненного в рамках этапа 3.1.3 Технического задания «Анализ условий эксплуатации реактора и связанных с ним систем» [11]) были составлены блоки нагрузки за прошедший период эксплуатации, а также выполнен прогноз на последующий – сверхпроектный период эксплуатации до 60 лет. Выбранные режимы, встречаемые в этих блоках нагрузки, анализировались в предыдущих этапах с помощью метода конечных элементов – были рассчитаны поля температур и напряжений.

1 ПРОЕКТНЫЕ РЕЖИМЫ, ВЛИЯЮЩИЕ НА ЦИКЛИЧЕСКУЮ ПРОЧНОСТЬ ЭЛЕМЕНТОВ КОРПУСА РЕАКТОРА, И ИХ ПРОГНОЗ НА СВЕРХПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ

Перечень режимов, влияющих на циклическую прочность элементов корпуса реактора, создан в [11]. На основании анализа прошедших эксплуатационных режимов и с учетом регламентируемого количества режимов, приведенных в [12], был выполнен прогноз появления режимов для последующей эксплуатации на проектный срок 40 лет и сверхпроектный – 60 лет.

Для оценки циклической прочности элементов корпуса реактора энергоблока № 1 ОП ЮУАЭС на сверхпроектный срок эксплуатации 60 лет в настоящем отчете использован уточненный консервативный прогноз. Консервативный прогноз для 60 лет эксплуатации будет основой для обоснования изменения проектного количества циклов нагружения реактора на последующем этапе проекта. Для создания уточненного консервативного прогноза для 60 лет принят следующий подход:

- 1. Для режимов, где возможно сохранить регламентированное количество режимов в соответствии с [12], т.е. не увеличивать регламентированное количество при продлении срока с 40 на 60 лет.
- Для режимов, где из тренда исчерпания режимов видна возможность 2. превышения регламентированного количества в течение сверхпроектной эксплуатации (быстрее, чем за 60 лет), создать прогноз на основании п. 5.1.3 методики [13]. Этот прогноз основан на линейной экстраполяции совокупного количества прошедших режимов за весь прошедший период эксплуатации. Так как для большинства режимов количество их появления в начале эксплуатации было гораздо выше, чем в последующих годах, этот прогноз кажется достаточно консервативным. Для режимов, появление которых равномерное в процессе эксплуатации, к прогнозируемому количеству по п. 5.1.3 методики [13] добавляется консервативной запас. Целью этого запаса является исключение возможности, что при потенциальном увеличении появления этих режимов выше существующего тренда перед окончанием сверхпроектного срока, их новое определенное количество не было лимитирующим для эксплуатации АЭС. Запас использован только для режима 1.1 «Заполнение оборудования рабочей средой, уплотнение оборудования», так как он появился в течение 27 лет 28 раз.

Результаты прогноза количества циклов нагружения, выполненного в соответствии с описанным выше подходом, приведены в таблице 2. В таблице 2 приведены режимы, влияющие на циклическую прочность элементов корпуса и

9

Таблица 2 – Перечень регламентированных, фактически прошедших режимов и прогнозируемое количество режимов на энергоблоке № 1 ОП ЮУАЭС

№ п.п	Наименование режима	Регламе- нтированное кол- во циклов по [12]	Фактическое кол- во циклов по состоянию на 31.12.2009г. по [14]	Прогнозируемое кол-во циклов на 60 лет
	1. Нормальна	ая эксплуата	ция	
1.1	Заполнение оборудования рабочей средой,	60	28	70
	уплотнение оборудования			
1.2	Раздельное гидроиспытание по первому	100	93	200
	контуру:			
	на плотность: павление I к $= 180 \mathrm{krc/cm}^2$			
	на прочность:	30	10	30
	давление I к. – 250 кгс/см ²	50	10	50
1.3	Плановый разогрев из «холодного»	130	91	200
	состояния со скоростью до 20 $^{\circ}C/ч$			
1.4	Снижение мощности реактора от	He	187	410
	номинальной до «горячего» состояния	регламентируе		
1 4 1	<u> </u>	тся	100	44.0
1.4.1	Вывод реактора из «горячего» состояния на	Не оолее /0 за	188	410
	номинальную мощность	срок экспл.		
142^{1}	Вывол реактора на номинальную мошность	Не более 70 за	0	0
1	после длительной (более 12 суток) работы	срок экспл.	Ū.	Ŭ
	на пониженной мощности и после	компл. кассет		
	перегрузки при работе реактора более 12			
	суток в конце каждого цикла и в режиме			
	работы на «мощностном эффекте»			
1.1.0	реактивности на мощности менее 85% N _{ном}	XX # 15		
1.4.3	Наброс мощности реактора при изменении	Не более 15 за	0	0
	нагрузки на 20% от текущего состояния	срок экспл.		
1 4 4	Мощности реактора	На болае 23 го	0	0
1.4.4	Повышение мощности после включения	пе облее 25 за	0	0
	i dii puice ne puooraioden nermi	компл. кассет		
1.5	Ложное срабатывание аварийной защиты	150	22/(99)	150
	реактора			
1.19	Опробование пассивного узла САОЗ	50	12	50
			12	на 1 САОЗ
			10	
1.00	Π	00		200
1.20	Плановое расхолаживание до «холодного»	90	91	200
	состояния со скоростью 30 °С/ч			

¹ Для оценки циклической прочности элементов КР нет необходимости различать режимы 1.4.1, 1.4.2, 1.4.3 и 1.4.4. Поэтому прогнозируется только 1.4.1. Следует отметить, что, так как многие режимы, а именно ННЭ и AC, приводят к снижению мощности реактора от номинальной до «горячего» состояния, то для сохранения физической правильности последовательности режимов, следует блоки нагрузки дополнить соответствующими режимами 1.4.1

N⁰	Наименование режима	Регламе- нтированное кол-	Фактическое кол- во циклов по	Прогнозируемое кол-во циклов на
п.п		во циклов по [12]	состоянию на 31.12.2009г. по [14]	60 лет
	2. Нарушение норм	альной эксп	луатации	
2.1	Обесточивание ГШН [.]	30		50 на насос
2.1	- одного ГЦН из четырех, трех и двух	20	23	
	работающих:		14	
	- лвух ГШН из четырех и трех работающих:		13	
	- трех ГЦН из четырех работающих,		9	
	четырех из четырех работающих, трех ГЦН			
	из трех работающих и двух ГЦН из двух			
	работающих.			
2.2	Режим с полным сбросом электрической нагрузки ТГ	150	26	150
2.3	Закрытие стопорных клапанов турбины	150	59	150
2.4	Полное обесточивание АЭС	10	2	10
2.5	Прекращение подачи питательной воды в ПГ	30	5	30
2.6	Снижение уровня во всех четырех ПГ более	70	2	70
	чем на 500 мм от номинального и			
	восстановление его подачей воды от ВПЭН			
2.7	Снижение уровня в любом ПГ более чем на	10	1	10
	750 мм от номинального и восстановление			
	его подачей воды от АПЭН			
2.8	Неуправляемое извлечение группы ОР СУЗ из активной зоны	30	0	30
2.9	Снижение концентрации борной кислоты в	30	0	30
	теплоносителе первого контура, вследствие			
	нарушений в системе борного			
	регулирования			
2.10	Режим течи ПГ (разрыв трубки	30	0	30
	теплообмена ПГ)			
2.11	Ложный впрыск в КД от штатного узла	10	0	10
	подпитки с температурой воды 60°С – 70°С			
2.12	Внезапный переход на подпитку первого	30	0	30
	контура с температурой воды 60°С – 70°С			
2.13	Режимы работы при нарушении	30	0	30
0.14	теплоотвода из герметичной оболочки			
2.14	Режимы аварииного отклонения частоты в			22
	- от 50,5 Гц до 51,0 Гц – до 10 с (но не более	10	4	
	60 с в год);			
	- от 49,0 Гц до 48,0 Гц – до 5 мин (но не	20	10	
	оолее 20 мин в год); - от 48 0 Ги до 47 0 Ги – до 1 мин (но не	15	0	
	более 6 мин в год);	15	v	
	- от 47,0 Гц до 46,0 Гц – до 10 с (не чаще	10	0	
	одного раза в три года)			
2.15	Ускоренное расхолаживание РУ со	10	1	10
	скоростью 60 °С/ч			

№ п.п	Наименование режима	Регламе- нтированное кол- во циклов по [12]	Фактическое кол- во циклов по состоянию на 31.12.2009г. по [14]	Прогнозируемое кол-во циклов на 60 лет	
2.16	Срабатывание УПЗ (УІВ)	150	15	150	
2.20	Суммарное число режимов с нарушениями нормальных условий эксплуатации	300	155 ²	300	
	3. Аварий	ные режимь	I		
3.1	Режим малой течи: разрыв трубопроводов первого контура Ду менее 100 мм	15	0	15	
3.2	Режим большой течи: разрыв трубопроводов первого контура Ду более 100 мм, включая Ду 850 мм	1	0	1	
3.3	Непосадка предохранительного клапана КД (по одному на каждый клапан)	3	0	3	
3.4	Непосадка предохранительного клапана ПГ (по одному на каждый ПГ)	8	0	8	
3.5	Непосадка клапанов устройства сброса пара БРУ-А, БРУ-К (по одному на каждое устройство)	8	1	8	
3.6	Выброс ОР СУЗ при разрыве чехла привода	5	0	5	
3.7	Мгновенное заклинивание или обрыв вала ГЦН (по одному на насос)	4	0	4	
3.8	Разрыв паропровода ПГ (по одному на ПГ)	4	0	4	
3.9	Разрыв паропровода острого пара	1	0	1	
3.10	Разрыв трубопровода питательной воды ПГ (по одному на ПГ)	4	0	4	
3.11	Суммарное число аварийных режимов	30	1	30	

Для расчета циклической прочности на основе линейных комбинаций основных состояний нагрузки в отчетах [2]-[10] определены расчетные состояния нагрузки. Эти линейные комбинации выбирались таким образом, чтобы как можно точнее была описана нагрузка при отдельных режимах.

Для режимов типа разогрев и расхолаживание (1.3, 1.20 и 2.15) для состояния, близкому к горячему состоянию (при 260°С для разогрева, при 290°С для расхолаживания) дополнительно учтено состояние нагрузки с пониженным давлением, причем использовано самое низкое допустимое давление при данных температурах в соответствии с Приложением 5 к [12]. Для наплавки это вносит дополнительный цикл напряжения, который необходимо включить в расчет циклической прочности с целью сохранения консерватизма.

Для гидроиспытания использован консервативный подход: вначале разогрев до температуры испытаний, далее повышение давления при этой температуре, и последующее понижение давления и расхолаживание на 20°С.

² Суммарное число с учетом исключения из режимов с нарушениями нормальных условий эксплуатации циклов по пп. 2.2, 2.6, 2.7, 2.17, 2.18, 2.19 данной таблицы, согласно нового ТРБЭ [12].

Последовательности режимов за прошедший период (кампании 1-28) и прогнозный на 60 лет эксплуатации приведены в таблице 3.

Количество режимов в таблице 2 приведено на основании прогноза для отдельных режимов. Для создания последовательности прогнозируемых режимов (таблица 2) некоторые режимы ННЭ и АС необходимо было исключить таким образом, чтобы их суммарное количество соответствовало прогнозу по строкам 2.20 и 3.11 таблицы 2. Следует отметить, что поскольку регламентируется как число отдельных режимов, так и суммарное число режимов категорий ННЭ и АС (которое меньше суммы числа регламентированного количества отдельных режимов), применение всех прогнозируемых режимов по количеству циклов, приведенных в таблице 2, было бы излишне консервативным. Для прогнозируемой последовательности были выбраны те режимы, протекание которых является более жестким, а именно 2.2, 2.3, 2.5, 3.1, 3.2, 3.5, 3.7-3.10. Учитывая вышеизложенное, суммарное количество режимов, входящих в последовательность, приведено в таблице 4.

N⁰	Последовательность режимов											
кампании					, 1-			1				
	Прошедшая эксплуатация											
1	1.1.	1.2.b	1.2.a	1.2.a	1.2.b	1.3.	1.20.	1.19.a	1.2.a	1.2.a	1.2.c	1.2.c
	1.3.	1.4.1.	1.5.b	1.4.1.	1.5.b	1.4.1.	1.5.b	1.2.d	1.4.1.	2.3.	1.4.1.	1.5.b
	1.4.1.	1.5.b	1.4.1.	1.5.b	1.2.d	1.2.d	1.2.d	1.2.d	1.4.1.	1.5.b	1.4.1.	3.5.a
	1.4.1.	1.5.b	1.20.	1.2.a	1.3.	1.4.1.	2.3.	1.20.	1.3.	1.4.1.	1.5.b	1.20.
	1.2.a	1.2.a	1.2.a	1.3.	1.4.1.	2.3.	1.4.1.	1.5.a	1.4.1.	2.3.	1.4.1.	2.3.
	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	2.3.	1.4.1.	1.5.a	1.4.1.	2.2.	1.4.1.	2.1.a
	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.5.a
	1.4.1.	1.5.b	1.4.1.	1.2.d	1.2.d	1.4.	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.	1.2.a
	1.2.a	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.20.					
2	1.1.	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.b	1.4.1.	2.3.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.4.4.	2.3.	1.20.	1.2.a	1.2.a
	1.2.a	1.2.a	1.2.a	1.2.a	1.3.	1.4.1.	2.3.	1.4.4.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	2.3.	1.4.4.	2.3.	1.4.4.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.
	1.4.1.	2.3.	1.4.4.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.4.	1.5.a	1.4.4.	1.5.a
	1.4.4.	1.5.a	1.4.4.	1.20.								
3	1.1.	1.2.a	1.2.a	1.19.a	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.
	1.4.4.	1.5.b	1.4.4.	2.3.	1.4.4.	1.5.b	1.4.4.	2.3.	1.4.4.	2.3.	1.4.4.	2.3.
	1.4.4.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.4.	2.3.	1.4.4.	2.3.	1.4.4.	2.3.	2.15.
	1.4.1.	1.4.	1.20.									
4	1.1.	1.2.a	1.3.	1.4.1.	2.3.	1.4.4.	1.5.a	1.4.1.	2.1.a	1.4.4.	1.4.	1.20.
	1.3.	1.2.a	1.4.1.	2.1.a	1.4.1.	1.5.a	1.4.4.	1.4.	1.20.	1.2.a	1.3.	1.4.1.
	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.5.b	1.4.4.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.
	1.4.1.	1.5.b	1.4.1.	1.5.b	1.4.1.	1.5.a	1.4.4.	2.3.	1.4.4.	1.4.	1.4.1.	1.4.
	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.2.a
	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	2.1.a	1.4.	1.4.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	1.6.d	1.4.1.	2.3.	1.20.	1.2.b					
5	1.1.	1.2.a	1.19.a	1.3.	1.4.1.	2.3.	1.4.4.	2.3.	1.4.4.	2.1.a	1.4.1.	2.3.
	1.6.a	1.4.4.	2.1.a	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.5.b	1.4.1.	1.4.	1.4.1.
	1.5.b	1.20.	1.3.	1.4.4.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.4.	1.5.a	1.4.1.
	2.3.	1.4.4.	1.4.	1.4.1.	1.4.	1.4.1.	1.5.a	1.4.4.	1.4.	1.20.	1.2.a	1.3.
	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.5.b	1.4.4.	1.4.	1.20.	1.2.a	1.3.
	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	2.3.	1.4.1.	2.1.a	1.4.4.	2.1.a	1.4.	1.4.1.
	1.4.	1.20.	1.2.c									
6	1.1.	1.2.a	1.19.a	1.3.	1.4.1.	2.3.	1.4.1.	2.5.	1.4.1.	1.4.	1.20.	1.2.a
	1.3.	1.4.1.	2.3.	1.4.4.	1.4.	1.4.1.	1.5.a	1.20.	1.2.a	1.3.	1.4.1.	2.3.
	1.4.4.	2.3.	1.4.4.	1.4.	1.20.	1.3.	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	1.4.
	1.20.	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	2.3.	1.4.4.
	1.4.	1.20.	1.2.a	1.3.	1.4.4.	2.3.	1.4.1.	1.4.	1.4.4.	2.3.	1.4.4.	1.4.

Таблица 3 – Последовательность режимов

Изменение

N⁰				п	007070	DOTOTI	HOOTI		AD			
кампании				11	оследо	ватель	ыность	режим	OB			
	1.20.											
7	1.1.	1.2.a	1.2.a	1.3.	1.20.	1.3.	1.4.1.	2.3.	1.20.	1.3.	1.4.1.	1.4.
	1.4.1.	2.3.	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.20.
	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	1.4.	1.20.		
8	1.1.	1.19.a	1.2.a	1.2.b	1.2.c	1.2.a	1.2.a	1.3.	1.4.2.	1.5.a	1.4.1.	1.4.4.
0	1.4.	1.4.1.	1.4.	1.4.1.	1.3.0	1.4.4. 1.5 h	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.
9	1.1.	1.19.a 1.4	1.2.a 1.4.1	1.3.	1.4.1.	1.3.0 1.2.a	1.4.1.	1.4.	1.4.1. 1.5.b	1.4.	1.4.1.	1.4.
	1.20.	1.3.	1.4.1.	1.4.	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.
	1.5.b	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.						
10	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.5.b	1.4.1.	1.5.a	1.4.1.	2.3.	1.4.1.
11	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.5.b	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.
11	1.1.	1.2.a	1.2.a 1.4.1	1.2.a	1.3.	1.4.1.	1.5.b	1.4.2.	1.4.	1.20.	1.2.a 1.20	1.3.
12	1.4.1.	1.4.	1.4.1. 1.2 h	1.4.	1.4.1.	1.3.a 1.20	1.4.4.	1.4.2.	1.4.2.	1.4.	1.20.	14
12	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.c	1.2.a	1.3.	1.4.1.	1.4.1.
	1.4.	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	2.3.	1.4.1.	1.5.b	1.20.	1.2.a	1.2.c
	1.3.	1.4.4.	1.4.	1.4.1.	1.4.	1.20.						
13	1.1.	1.19.a	1.2.a	1.2.a	1.2.c	1.2.a	1.2.c	1.2.c	1.2.c	1.3.	1.20.	1.2.a
	1.3.	1.4.1.	1.5.b	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.3.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.4.	1.4.4.	2.3.	1.4.1.	1.4.
14	1.1.	1.2.a	1.2.a	1.3.	1.4.1.	2.3.	1.4.1.	1.5.b	1.4.4.	1.4.	1.4.1.	2.3.
	1.20.	1.2.a	1.3.	1.4.4.	1.4.	1.20.	1.3.	1.4.1.	1.5.b	1.4.1.	1.4.	1.4.1.
	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	2.16.	1.4.1.	1.4.	1.20.	
15	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	1.4. 1.4	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.20.	1. 4 . 1.2.a	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
16	1.1.	1.2.a	1.2.b	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.
	2.2.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	2.14.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.2.a
17	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.4	1 4 1	2.14	1 4 1
17	1.1. 2.14	1.19.a 1 4 1	1.2.a 2.14	1.2.a 1.4.1	1.3. 2.14	1.4.1.	1.4. 2.14	1.4.1.	1.4. 2.14	1.4.1.	2.14. 14	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.
	1.20.	1.2.c	1.2.c	1.2.a								
18	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	2.3.
	1.4.1.	2.14.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.14.	1.4.1.	1.4.	1.20.	1.2.a
10	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1 4 1	2.14	1 4 1
19	2.14	1.2.0	1.2.a 1.4	1.19.a 1.4.1	2.3	1.4.2.	1.4	1.4.1	1.4.	1.4.1.	2.14.	1.4.1
	1.4.	1.20.	1.2.a	1.2.a	1.3.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.			
20	1.1.	1.2.b	1.19.a	1.2.a	1.3.	1.4.2.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.3.
21	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.4.1
21	1.1.	1.2.a 1.4.1	1.2.a 1.4	1.3.	1.4.1.	2.2.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.
22	1.1	1.4.1. 1.2.a	1. 4 .	1.2.a	1.2.a	1.3	1.4.1	2.3	141	1.4	141	2.3
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.
	1.4.	1.20.										
23	1.1.	1.19.a	1.2.a	1.2.a	1.3.	1.4.2.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1. 1.3	1.4. 1.4.1	1.4.1. 1.4	1.4. 1.4.1	1.4.1. 1.4	1.4. 1.4.1	1.4.1. 1.4	1.4. 1.4.1	1.4.1. 1.4	1.4. 1.4.1	1.20.
	1.2.a 1.20.	1.5.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.
24	1.1.	1.19.a	1.2.a	1.3.	1.20.	1.2.a	1.3.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	2.3.	1.4.1.	1.4.	1.20.								
25	1.1.	1.2.b	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.
	1.4.1.	1.4.	1.20.	1.2.a 1.4	1.5.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a 1.4.1	1.3.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.1.a
26	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	2.3.	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.		
27	1.1.	1.2.b	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.
	1.4.1.	1.4.	1.20.									
28	1.1.	1.2.a	1.2.c	1.19.a	1.3.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.
	1.4.	1.4.1. 1 4 1	1.4. 1 4	1.4.1. 1 4 1	1.4. 1.4	1.4.1. 1 4 1	1.4. 1.4	1.4.1. 1 4 1	1.4. 1.4	1.4.1.	1.4.	1.4.1. 1 3
	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.4.	1.20.	1.2.a	1.J.

N⁰	Послеловятельность режимов											
кампании				11	юследс	JDATUII	БПОСТВ	рсжим	UD			
	1.4.1.	1.4.	1.20.	1.2.a	1.2.c	1.3.	1.4.1.	1.4.	1.20.			
				Про	огноз н	на 60 л	ет экс	плуат	ации			
29	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.19.	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.
	1.5.	1.4.1. 1 4	1.4. 1.4.1	1.4.1.	1.0. 1.4.1	1.4.1.	2.2.	1.20.	1.2.a	1.5.	1.4.1.	1.0.
30	1.1.	1.4. 1.2.a	1.4.1.	1.19	1.3	1.4.1	2.3	1.4.1	2.2	1.4.1	1.6	141
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.5.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	1.20.	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.
	1.4.1.	1.6.	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.
31	1.3.	1.20.	1 19	13	141	23	141	2.2	141	16	141	14
51	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.7.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.
32	1.20.	12a	12h	1 10	13	1.4.1	23	1.4.1	2.2	1.4.1	1.6	1.4.1
52	1.1.	1.2.a 1.4.1.	1.2.0	1.4.1.	1.4.	1.4.1.	2.5. 1.6.	1.4.1.	3.8.	1.20.	1.0. 1.2.a	1.4.1.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.
	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	1.6.	1.4.1.
33	1.4.	1.4.1.	1.5. 1.2 h	1.20.	13	1.4.1	23	1.4.1	2.2	1 / 1	1.6	1.4.1
33	1.1.	1.2.a 1.4.1	1.2.0	1.19.	1.3.	1.4.1.	2.5.	1.4.1.	2.2.	1.4.1.	1.0. 1.2 a	1.4.1.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.
	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.
3/	1.5.	1.20.	1 10	13	1.4.1	23	1/1	2.2	1/1	1.6	1.4.1	1.4
54	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.5.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.	1.4.1.	1.6.
35	1.20.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.10.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.19.	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.
	1.5.	1.4.1.	1.4. 1.4.1	1.4.1. 1.4	1.6. 1.4.1	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.
36	1.1.	1.0. 1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.2.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	2.2.
37	1.20.	1.2.a 1.2.a	1.5.	1.4.1.	1.0.	2.3	1.4.	2.2	1.3.	1.20.	141	14
57	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.
38	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.5.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.
	1.4.1.	1.4. 1 / 1	1.4.1. 1.5	1.6. 1.20	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	1.6.	1.4.1.
39	1.4.	1.4.1.	1.3. 1.2.h	1.19	1.3	141	2.3	141	2.2	1.4.1	16	1.4.1
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.7.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.
	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.
40	1.3.	1.4.1.	1.0.	1.20.	141	23	141	2.2	141	16	141	14
10	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.8.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.

N⁰				п	[ос пело	вятепь	ность	пежим	OB			
кампании				11	оследо	Dartin	JIIOCID	режим	UD			
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.	1.20.	
41	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.19.	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.
	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.
4.0	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.	1.20.	1.4.1	2.2	1.4.1	1.0	1.4.1
42	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.0.	1.4.1.	5.5. 1.4.1	1.20.	1.2.a	1.5.
	1.4.1.	1.0.	1.4.1.	2.5. 1.4	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.3.	1.4.1.	1.0.
	1.4.1	2.2	1.4.1.	1. 4 . 1.2.a	1.3	1.4.1	1.4.1.	1.5.	1.4.1.	1.4.1	1.5	1.20
43	1.1	1.2.a	1.19	1.3	1.4.1	2.3	1.4.1	2.2	1.4.1	1.6	1.4.1	1.4
	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.10.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.
	1.20.											
44	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.20.	1.2.a	1.3.	1.4.1.	1.6.
	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.	1.4.
	1.20.	1.2.a	1.5.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.
	1.0.	1.4.1.	1.20	1.20.	1.2.a	1.5.	1.4.1.	1.0.	1.4.1.	1.4.	1.4.1.	1.5.
45	1.1.	1.0. 1.2.a	1.19	1.3	1.4.1	2.3	1.4.1	2.2	1.4.1	1.6	1.4.1	1.4
	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.
	1.20.											
46	1.1.	1.2.a	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.
	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.5.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.0.	1.4.1.	2.2.	1.20.
47	1.2.a	1.3.	1.4.1. 1.2 h	1.0.	1.4.1.	1.4.	23	1.5.	2.2	141	1.6	141
17	1.1.	1.4.1	1.5	1.1.7.	1.4	1.4.1	1.6	1.4.1	3.7	1.20	1.0. 1.2.a	1.3
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	2.15.	1.1.	1.2.a	1.19.	1.3.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.
	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.
	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.	1.20.					
48	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.8.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1. 4 . 2.2	1.4.1.	1.4. 1.2.a	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.0.
49	1.4.1.	12.2.	1.20.	1.2.0	1.3.	23	1.0.	2.2	1.4.1	1.4.1.	1.3.	1.20.
	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.	1.4.1.
	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.
	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.	1.5.
	1.4.1.	1.6.	1.20.									
50	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.0.	1.4.1.	3.3. 1.4.1	1.20.	1.2.a	1.3.
	1.4.1.	1.0.	1.4.1.	2.5.	1.4.1.	1.4.	1.4.1.	2.2. 1.4	1.4.1.	1.5.	1.4.1.	1.0.
	1.4.1	1.4.	141	1.1.	1.2.a 1.4.1	2.2	1.4.1.	1. 4 . 12a	1.4.1.	141	1.4.1.	1.5.
	1.4.	1.4.1.	1.5.	1.20.	1	2.2.	1.20.	1.2.4	1.5.	1	1.0.	1.1.1.
51	1.1.	1.2.a	1.2.b	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.10.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.
	1.4.1.	1.4.	1.4.1.	1.4.	1.4.1.	2.3.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.
	1.4.1.	2.2.	1.20.	1.2.a	1.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.	1.4.1.
	1.5.	1.20.										
52	1.1.	1.2.a	1.19.	1.3.	1.4.1.	2.3.	1.4.1.	2.2.	1.4.1.	1.6.	1.4.1.	1.4.
	1.4.1.	1.5.	1.4.1. 1 4	1.4. 1 4 1	1.4.1. 2.2	1.6.	1.20.	1.2.a	1.5.	1.4.1. 1 4 1	1.6. 1.4	1.4.1. 1.4.1
	2.5.	1.4.1.	1.4. 2 2	1.4.1. 1 / 1	2.2. 1.5	1.4.1.	1.3.	1.4.1.	1.0.	1.4.1.	1.4. 2.2	1.4.1.
	1.4.	1.4.1.	2.3. 141	1.4.1. 16	1.5.	1.4.1.	1.4.	1.4.1.	1.0.	1.4.1.	2.2.	1.20.
53	1.1	129	1.4.1.	1 19	13	141	2.3	141	2.2	141	16	141
	1.4.	1.4.1.	1.5.	1.4.1.	1.4.	1.4.1.	1.6.	1.4.1.	3.1.	1.20.	1.2.a	1.3.
	1.4.1.	1.6.	1.4.1.	2.3.	1.4.1.	1.4.	1.4.1.	2.2.	1.4.1.	1.5.	1.4.1.	1.6.

16

№ Последовательность режимов кампании 1.4.1. 1.4. 2.15. 1.1. 1.2.a 1.19. 1.3. 1.4.1. 1.4. 1.4.1. 2.3. 1.4.1. 1.4.1. 1.4.1. 1.5. 1.4.1. 1.4. 1.6. 1.4.1. 2.2. 1.20. 1.2.a 1.3. 2.2. 1.4.1. 1.4.1. 1.4.1. 1.4.1. 1.20. 1.6. 1.4. 1.5. 1.6. 54 1.1. 1.2.a 1.2.b 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1. 1.4. 1.4.1.1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1.3.5. 1.20. 1.2.a 1.3. 1.4.1. 1.6. 1.4.1. 2.3. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1. 1.6. 1.5. 1.4.1. 1.4. 1.4.1. 1.4. 1.4.1. 2.3. 1.4.1. 1.4.1. 1.4. 1.4.1. 1.6. 141 2.2. 1.20. 1.2a1.3 1.4.1. 1.4.1 1.4.1. 1.5. 1.20. 1.6 1.4 55 1.1. 1.2.a 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1. 1.4. 1.5. 1.4.1. 1.4. 1.4.1. 3.8. 1.20. 1.2.a 1.3. 1.4.1. 1.4.1. 1.4.1. 1.6. 1.4.1. 2.3. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1. 1.6. 1.4.1. 1.6. 1.4. 1.4.1. 1.4. 1.4.1. 2.3. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1. 2.2. 1.20. 1.2.a 1.3. 1.4.1. 2.2. 1.4.1. 1.4.1. 1.4.1. 1.6. 1.4. 1.5. 1.20. 1.2.a 1.2.b 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 56 1.1. 1.4.1. 1.6. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1. 3.9. 1.20. 1.2.a 1.3. 1.4. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.4.1. 1.4.1. 2.3. 1.4.1. 1.5. 1.6. 1.6. 1.4.1. 1.4. 2.15. 1.4.1. 1.4. 1.4.1. 2.3. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 57 1.1. 1.2.a 1.3. 2.2. 1.4.1. 1.2.a 1.4.1. 1.4.1. 1.4.1. 1.20. 1.3. 1.6. 1.4. 1.5. 1.6. 1.20. 2.2. 58 1.1. 1.2.a 1.2.b 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 1.4.1. 1.6. 1.4.1. 3.1. 1.4.1. 1.4.1. 1.20. 1.2.a 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.3. 1.4. 1.4.1. 1.6. 1.4.1. 2.3. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1. 1.6. 1.4.1. 1.4. 1.4.1. 1.4. 1.4.1. 2.3. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1. 2.2. 1.20. 1.2.a 1.4.1. 2.2. 1.4.1. 1.4.1. 1.4. 1.4.1. 1.3. 1.6. 1.5. 1.4.1 1.6. 1.20. 59 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1. 1.4. 1.1. 1.2.a 3.7. 1.5. 1.4. 1.2.a 1.4.1. 1.4.1. 1.6. 1.4.1. 1.20. 1.3. 1.4.1. 1.4.1. 1.6. 1.4.1. 2.3. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1. 1.6. 1.4.1. 2.3. 1.4. 1.20. 1.3. 1.4.1. 1.4. 1.4.1. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 2.2. 1.6. 1.4.1. 1.20. 1.2.a 1.3. 1.4.1. 1.6. 1.4.1. 1.4. 1.4.1. 1.5. 1.20. 60 1.1. 1.2.a 1.2.b 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1. 1.4.1. 3.10. 1.4.1. 1.5. 1.4.1. 1.4. 1.6. 1.4.1. 1.2.a 1.20. 1.3. 1.4. 1.4.1. 1.6. 1.4.1. 2.3. 1.4.1. 1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1. 1.6. 1.20. 1.2.a 1.3. 1.4.1. 1.4. 2.3. 1.4.1. 1.4. 1.19. 1.4.1. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1. 2.2. 1.20. 1.2.a 1.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1 1.4. 1.4.11.5. 1.20 61 1.1. 1.2.a 1.19. 1.3. 1.4.1. 2.3. 1.4.1. 2.2. 1.4.1. 1.6. 1.4.1. 1.4. 1.4.1. 1.5. 1.4.1. 1.2.a 1.3. 1.4.1. 1.4. 1.4.1. 1.6. 1.20. 1.4.1. 1.6. 2.3. 1.4.1.1.4. 1.4.1. 2.2. 1.4.1. 1.5. 1.4.1.1.6. 1.4.1. 1.4. 1.4.1.1.4. 1.4.1. 1.5. 1.4.1. 1.4. 1.4.1. 1.6. 1.4.1. 2.2. 1.20. 1.2.a 1.3. 1.4.1 1.6. 1.4.1. 1.5. 1.20.

Таблица 4 – Суммарное количество режимов, входящих в последовательность для оценки циклической прочности.

Режим	Фактическое кол-во учтенных режимов для прошедшей эксплуатации	Прогнозируемое кол-во учтенных режимов для будущей эксплуатации (до 60 лет – 33 кампаний)	Суммарное кол-во учтенных режимов для 60 лет
1.1	28	42	70
1.2. a	116	107	223
1.2. b	10	20	30
1.2. c	15	0	15
1.2. d	7	0	7
1.3	97	109	206
1.4	244	223	467
1.4.1	331	783	1114
1.4.2	8	0	8
1.4.4	49	0	49
1.5	50	128	178
1.19	13	38	51
1.20	96	96	100
2.1*	9	0	9
2.2*	6	111	117
2.3*	57	93	150
2.5*	1	0	1
2.14*	12	0	12
2.15	1	9	10
2.16*	1	0	1
∑ННЭ	87	213	300
3.1**	0	8	8
3.2**	0	1	1
3.5**	1	7	8
3.7**	0	4	4
3.8**	0	4	4
3.9**	0	1	1
3.10**	0	4	4
$\sum \overline{AC}$	1	29	30

Примечание. * – При оценке циклической прочности патрубков СУЗ, ТК, КНИ и воздушника все режимы ННЭ (за исключением режима 2.15) представлены в виде медленного перехода до горячего состояния, и в последовательности они были реализованы одним расчетным состоянием. Прогнозируемое количество режимов ННЭ (за исключением режима 2.15) для будущей эксплуатации составляет 204, а суммарное количество для 60 лет эксплуатации соответственно 290.

** – При оценке циклической прочности патрубков СУЗ, ТК, КНИ и воздушника все режимы АС представлены в виде медленного перехода до горячего состояния, и в последовательности они были реализованы одним расчетным состоянием. Прогнозируемое количество режимов АС для будущей эксплуатации составляет 29, а суммарное количество для 60 лет эксплуатации соответственно 30.

2 РЕЗУЛЬТАТЫ РАСЧЕТОВ ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ НА СВЕРХПРОЕКТНЫЙ СРОК ЭКСПЛУАТАЦИИ

Для оценки циклической прочности на сверхпроектный срок был использован такой же подход, как и для проектного срока в отчетах [2]-[10].

Для оценки точек в наплавке использованы механические свойства (предел текучести, предел прочности и относительное сужение) такие же, как для соответствующего основного металла или сварного шва под наплавкой. Этот подход соответствует подходу, который использован в рамках проектных расчетов (например, в [16]-[17]). Использование механических свойств основного металла для оценки циклической прочности наплавки может быть обосновано тем, что наплавка не может свободно деформироваться, так как она связана с основным металлом. Более того, для оценки циклической прочности.

При расчетах приняты механические свойства материалов при температуре 320°С, за исключением цилиндрической части КР и холодных патрубков ГЦТ и САОЗ, где использовались механические свойства при температуре 290°С. Кроме того, поскольку согласно данным в [15] снижение значения относительного сужения под воздействием облучения не большое, и не ниже нормативных значений по ПНАЭ Г-7-002-86 [1], при расчете циклической прочности облучаемых элементов КР используются нормативные значения относительного сужения.

Расчет приведенных напряжений и условных упругих приведенных напряжений, определение полуциклов и расчет вкладов от отдельных полуциклов в накопленное усталостное повреждение выполнен в соответствии с п.п. 5.3 и 5.6 норм [1]. Допускаемое число циклов нагружения определяется по формулам (5.20) и (5.25) норм ПНАЭ Г-7-002-86 [1], при этом в обоих случаях допустимые значения определяются по коэффициенту запаса прочности по напряжениям (n_{σ}) и по числу циклов (n_N). Из 4-х значений, полученных по формулам (5.20) и (5.25) норм ПНАЭ Г-7-002-86 [1], выбирается наименьшее значение.

Коэффициент асимметрии цикла принимается в соответствии с п. 5.6.8 норм ПНАЭ Г-7-002-86 [1].

Остаточные напряжения в сварных швах были учтены в соответствии с п. 5.6.10 норм ПНАЭ Г-7-002-86 [1]. Для точек, где амплитуда условного упругого напряжения не превышает ни в одном цикле предел текучести при 20°С, учтено (постоянное) остаточное напряжение, равное величине предела текучести.

Расчетные формулы, приведенные в нормах [1], программировались на языке С. Коэффициенты безопасности в формулах для допускаемой амплитуды напряжения были заданы в соответствии с п. 5.6.6 норм [1].

Значения коэффициентов снижения циклической прочности и коэффициентов безопасности для отдельных элементов реактора приведены в соответствующих разделах.

2.1 Результаты расчетов циклической прочности цилиндрической части корпуса реактора, включая днище и кольцо разделительное

Расчеты циклической прочности цилиндрической части корпуса реактора, включая днище и кольцо разделительное, для сверхпроектного срока эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [2].

Перечень расчетных состояний нагрузки для нижней части корпуса реактора и для области кольца разделительного приведены в таблице 20 отчета [2], в котором также в таблицах 21-22 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспорте [18] о методе сварки, термообработке и т.д. (см. таблицу 18 отчета [2]).

2.1.1 Точки, выбранные для оценки циклической прочности

Расчеты циклической прочности выполнены в следующих точках:

– точки, лежащие на внутренней поверхности (в наплавке) обозначены номером соответствующего сечения и буквой "а",

– точки в основном материале или же в сварном шве, лежащие близко под наплавкой, обозначены номером соответствующего сечения и буквой "b",

– точки на наружной поверхности КР обозначены номером соответствующего сечения и буквой "с").

- в области кольца разделительного использованы точки № 15-45.

Расположение оцениваемых точек приведено на рисунках 1-3.

Рисунок 1 – Расположение точек для оценки циклической прочности на цилиндрической части корпуса реактора с днищем

Рисунок 2 – Расположение точек для оценки циклической прочности в КР в области присоединения кольца разделительного

Рисунок 3 – Расположение точек для оценки циклической прочности в кольце разделительном

2.1.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 5-9 (максимальные значения обозначены жирным шрифтом).

Таблица 5 – Накопленное усталостное повреждение на внутренней поверхности							
наплавки цилиндрической части КР с днищем							
		Материал				Накопленное усталос	

N⁰	Реальный	Материал				Накопленное усталостное
точки	материал	заменитель для	ϕ_s	n _N	n _σ	повреждение
10 IKH	Marephan	расчетов усталости				(60 лет эксплуатации)
1a	Св-08Х19Н10Г2Б	Св-16Х2НМФТА	0,8	10	2	0,018080
2a	Св-08Х19Н10Г2Б	Св-16Х2НМФТА	0,8	10	2	0,038720
3a	Св-08Х19Н10Г2Б	Св-16Х2НМФТА	0,8	10	2	0,040545
4a	Св-08Х19Н10Г2Б	Св-16Х2НМФТА	0,8	10	2	0,040083
5a	Св-08Х19Н10Г2Б	Св-16Х2НМФТА	0,8	10	2	0,081000
6a	Св-04Х20Н10Г2Б	Св-10ХГНМАА	0,8	10	2	0,116385
7a	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,019369
8a	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,024287
9a	Св-04Х20Н10Г2Б	Св-10ХГНМАА	0,8	10	2	0,031283
10a	Св-04Х20Н10Г2Б	Св-08ХГНМТА	0,8	10	2	0,027533
11a	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,052236
12a	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,025668
13a	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,028123
14a	Св-04Х20Н10Г2Б	Св-10ХГНМАА	0,8	10	2	0,037950

Таблица 6 – Накопленное усталостное повреждение под наплавкой в цилиндрической части КР с днищем

№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
1b	Св-16Х2НМФТА	1,0	10	2	0,005094
2b	Св-16Х2НМФТА	1,0	10	2	0,000109
3b	Св-16Х2НМФТА	1,0	10	2	0,000208
4b	Св-16Х2НМФТА	1,0	10	2	0,015043
5b	Св-16Х2НМФТА	1,0	10	2	0,010412
6b	Св-10ХГНМАА	1,0	10	2	0,000746
7b	15Х2НМФА	-	10	2	0,000084
8b	15Х2НМФА	-	10	2	0,006228
9b	Св-10ХГНМАА	1,0	10	2	0,014249
10b	Св-08ХГНМТА	1,0	10	2	0,023355
11b	15Х2НМФА	-	10	2	0,004851
12b	15Х2НМФА	-	10	2	0,003039
13b	15Х2НМФА	-	10	2	0,000993
14b	Св-10ХГНМАА	1,0	10	2	0,031857

Примечание. Для точек 1b-6b, 9b, 10b и 14b оценка выполнена с учетом остаточных напряжений.

Таблица 7 – Накопленное усталостное	повреждение на наружной поверхности
цилиндрической части КР с днищем	

№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
1c	Св-16Х2НМФТА	1,0	10	2	0,033691
2c	Св-16Х2НМФТА	1,0	10	2	0,000211
3c	Св-16Х2НМФТА	1,0	10	2	0,000183
4c	Св-16Х2НМФТА	1,0	10	2	0,016308
5c	Св-16Х2НМФТА	1,0	10	2	0,010390
6с	Св-10ХГНМАА	1,0	10	2	0,016864
7c	15Х2НМФА	-	10	2	0,005813
8c	15Х2НМФА	-	10	2	0,005995
9c	Св-10ХГНМАА	1,0	10	2	0,006469
10c	Св-08ХГНМТА	1,0	10	2	0,040244
11c	15Х2НМФА	-	10	2	0,001302
12c	15Х2НМФА	-	10	2	0,001690
13c	15Х2НМФА	-	10	2	0,000948
14c	Св-10ХГНМАА	1,0	10	2	0,021871

Примечание. Для точек 1с-6с, 9с, 10с и 14с оценка выполнена с учетом остаточных напряжений.

Таблица 8 – Накол	пленное усталостное повре	еждение в области кольца
разделительного (основной металл и сварны	іе швы)

N⁰	Материал	0	n.	n	Накопленное усталостное
точки	ики ψ_s η_N η_σ		(60 лет эксплуатации)		
15	15Х2НМФА	-	10	2	0,000609
16	15Х2НМФА	-	10	2	0,000546
17	15Х2НМФА	-	10	2	0,000034
18	15Х2НМФА	-	10	2	0,000016
19	15Х2НМФА	-	10	2	0,000087
20	22К	-	10	2	0,021305
21	22К	-	10	2	0,027576
22	22К	-	10	2	0,030580
23	22К	-	10	2	0,019441
24	22К	-	10	2	0,037501
25	22К	-	10	2	0,042373
26	Св-08А	1,0	10	2	0,006747
27	Св-08А	1,0	10	2	0,008449
28	Св-08А	1,0	10	2	0,005342
29	Св-08А	1,0	10	2	0,008988
30	Св-08А	1,0	10	2	0,010473

24

№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
31	Св-08А	1,0	10	2	0,004842
32	Св-08А	1,0	10	2	0,004445
33	Св-08А	1,0	10	2	0,005893
34	Св-08ХГНМТА	1,0	10	2	0,009319
35	Св-08ХГНМТА	1,0	10	2	0,005384

Примечание. Для точек 34-35 оценка выполнена с учетом остаточных напряжений.

Таблица 9 – Накопленное усталостное повреждение в области кольца разделительного (наплавка)

	Материал				n	Накопленное
N⁰	Реальный	Реальный заменитель для 🛛 🖉 г		ny		усталостное
точки	материал	расчетов	Ψs	ΠN	110	повреждение
		усталости				(60 лет эксплуатации)
36	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,274390
37	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,301935
38	ЗИО-8	22К	0,8	10	2	0,114689
39	ЗИО-8	22К	0,8	10	2	0,122207
40	ЗИО-8	22К	0,8	10	2	0,621972
41	ЗИО-8	22К	0,8	10	2	0,706170
42	Св-04Х20Н10Г2Б	22К	0,8	10	2	2,330124
43	Св-07Х25Н13	22К	0,8	10	2	1,255023
44	Св-07Х25Н13	22К	0,8	10	2	1,664856
45	Св-04Х20Н10Г2Б	Св-08ХГНМТА	0,8	10	2	0,037943

Из результатов оценки циклической прочности, приведенных в таблицах 5-9 видно, что условие циклической прочности для 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС выполняется во всех точках цилиндрической части КР, включая днище и кольцо разделительное, за исключением точек № 42-44 в наплавке на кольце разделительном.

Максимальное накопление усталостного повреждения, было определено в материале наплавки. Это вызвано высокими напряжениями в наплавке при температуре, которая отличается от температуры ненапряженного состояния, и в результате отличия коэффициента теплового расширения наплавки и основного металла (или же материала сварного шва). Таким образом, каждое, хотя и медленное, изменение температуры вносит значительный вклад в усталостное повреждение материала наплавки. В цилиндрической части КР, включая днище, в наплавке в точках 5а, 6а и 11а (области с концентраторами напряжений) также получены

25

относительно высокие значения накопленного усталостного повреждения, непревышающие допускаемое значение, причем максимальное значение получено в точке 6a (внутренняя поверхность в месте сварного шва № 2), где переход цилиндрической части КР в днище. Точки № 42-44 в наплавке на кольце разделительном, для которых условие циклической прочности не выполняется, являются значительными концентраторами напряжений.

На напряженное состояние внутренней поверхности стенки КР влияют также напряжения от быстрого изменения температуры. Для нижней части КР они несущественны, но для области кольца разделительного они значительны. К увеличению значения накопленного усталостного повреждения приводит также использование коэффициента снижения усталостной прочности в сварном шве (или наплавке) ϕ_s .

В основном материале, или же в материале сварного шва, под наплавкой рассчитанное значение накопленного усталостного повреждения на порядок ниже, чем в наплавке. Поскольку все вышеперечисленные негативные эффекты, влияющие на значение накопленного усталостного повреждения материала наплавки, не оказывают влияния на основной металл и металл сварных соединений. Максимальное значение накопленного усталостного повреждения в цилиндрической части КР, включая днище, получено в точке 14b. На наружной поверхности значение накопленного повреждения незначительное. Максимальное значение накопленного усталостного повреждения в области кольца разделительного (в основном материале, или же в материале сварного шва) получено в точках 24 и 25, но эти значения не превышают допускаемое.

Состояние металла цилиндрической части корпуса реактора в процессе эксплуатации отслеживается в рамках Типовой программы периодического контроля АИЭУ-9-04 [19]. За прошедший период эксплуатации получены удовлетворительные результаты контроля [20]. Учитывая вышеизложенное, при эксплуатации корпуса реактора в сверхпроектный период периодический контроль состояния металла цилиндрической части КР рекомендуется выполнять в соответствии с требованиями [19]. С Типовой программы целью мониторинга механизма усталостного повреждения области концентраторов напряжений В наплавке на кольце разделительном в области точки № 42 при выполнении периодического контроля в период сверхпроектного срока эксплуатации, кроме применения методов ВК и КК рекомендуется ЮУАЭС рассмотреть возможность использовать аттестованный метод ВТК, а для области в районе точек №43-44 - УЗК.

2.2 Результаты расчетов циклической прочности узла уплотнения реактора

Расчеты циклической прочности узла уплотнения реактора для сверхпроектного срока эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [3].

Перечень расчетных состояний нагрузки для оценки циклической прочности ГРР приведены в таблице 24 отчета [3], в котором также в таблице 25 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспортах корпуса и верхнего блока [18, 21] о методе сварки, термообработке и т.д. (см. таблицу 22 отчета [3]).

2.2.1 Точки, выбранные для оценки циклической прочности

Расчеты циклической прочности выполнены в выбранных точках в наплавке (на внутренней поверхности), в основном материале (вблизи наплавки и на наружной поверхности) и в шпильке (для стержня и резьбы). Расположение оцениваемых точек (за исключением шпильки), включая их точную позицию, изображено на рисунке 4 (начало системы координат находится на оси реактора в полюсе днища в точке перехода от наплавки к основному металлу).

2.2.2 Результаты расчета циклической прочности

Поскольку шпильки после исчерпания ресурса/срока эксплуатации или в случае выявления недопустимых повреждений должны быть заменены, то оценка циклической прочности выполняется для прогнозного количества циклов после замены шпилек на новые после окончания 30-летнего срока их эксплуатации. Прогнозное количество циклов для будущих 30 лет эксплуатации новых шпилек для расчета принято на основании прогноза для 60 лет эксплуатации (см. таблицу 3).

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 10-13 (максимальные значения обозначены жирным шрифтом).

Рисунок 4 – Расположение точек для оценки циклической прочности узла уплотнения реактора

Точка	Коэффициент концентрации в резьбовых участках <i>К</i> _б		n _N	n _σ	Накопленное усталостное повреждение
стержень шпильки	1,00	-	5	1,5	0,0006
верхний резьбовой участок шпильки	4,62	-	5	1,5	0,3553
нижний резьбовой участок шпильки	3,04	-	5	1,5	0,0694
резьбовые участки шпильки для реального коэффициента <i>К</i> _б	2,30	-	5	1,5	0,0265

Из результатов оценки циклической прочности, приведенных в таблице 10, следует, что условие циклической прочности выполняется для всех участков шпильки, для прогноза на последующие 30 лет эксплуатации энергоблока № 1 ОП ЮУАЭС после замены шпилек.

Таблица 11 – Накопленное усталостное повреждение на внутренней поверхное	сти
наплавки	

№ точки	Реальный материал	Материал заменитель для расчетов усталости	ϕ_{s}	n _N	n _σ	№ узла	Накопленное усталостное повреждение (60 лет эксплуатации)
1	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	34020	0,08169
4	Св-04Х20Н10Г2Б	Св-08ХГНМТА	0,8	10	2	36575	0,12969
7	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	33550	1,06478
10	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	43777	0,01264
14	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	32445	0,04683
15	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	39139	1,40563
17	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	31417	0,03358
18	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	99998	46,13725
19	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	99186	50,10427
20	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	2679	0,27938
23	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	2360	0,28837
25	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	5975	0,58161
27	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	5737	0,63287
30	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	6763	0,47179
33	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	6996	0,44563
35	Св-08Х19Н10Г2Б	Св-10ХГНМАА	0,8	10	2	7159	0,31750

29

№ точки	Материал	№ узла	φs	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
2	15Х2НМФА	47290	-	10	2	0,00127
5	Св-08ХГНМТА	45838	1,0	10	2	0,02540
8	15Х2НМФА	45299	-	10	2	0,00157
11	15Х2НМФА	43778	-	10	2	0,00400
12	15Х2НМФА	42544	-	10	2	0,00860
13	15Х2НМФА	41981	-	10	2	0,01547
16	15Х2НМФА	39952	0,8	10	2	0,00428
21	15Х2НМФА	2458	-	10	2	0,01423
22	15Х2НМФА	2570	-	10	2	0,01745
24	15Х2НМФА	22076	-	10	2	0,00780
26	15Х2НМФА	25173	-	10	2	0,01375
28	15Х2НМФА	25207	-	10	2	0,01518
31	15Х2НМФА	24677	-	10	2	0,01118
34	15Х2НМФА	24459	-	10	2	0,00882
36	Св-10ХГНМАА	24484	1,0	10	2	0,03369

	Таблица 12 – Накопленное	усталостное повреждение под наплавкой
--	--------------------------	---------------------------------------

Примечание. Для точек 5 и 36 оценка выполнена с учетом остаточных напряжений.

-	5		1			
№ точки	Материал	№ узла	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
3	15Х2НМФА	54428	-	10	2	0,00005
6	Св-08ХГНМТА	54469	1,0	10	2	0,00699
9	15Х2НМФА	52663	-	10	2	0,00009
29	15Х2НМФА	18974	-	10	2	0,00121
32	15Х2НМФА	15541	-	10	2	0,00083
37	Св-10ХГНМАА	26626	1,0	10	2	0,00201

Таблица 13 – Накопленное усталостное повреждение на наружной поверхности

Примечание. Для точек 6 и 37 оценка выполнена с учетом остаточных напряжений.

Из результатов оценки циклической прочности, приведенных в таблицах 11-13, следует, что условие циклической прочности не выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для следующих точек:

- Точка № 7 на внутренней поверхности наплавки в области перехода цилиндрической части КР в конусную часть фланца точка является значительным концентратором напряжений.
- Точка № 15 на внутренней поверхности наплавки в области фланца КР в опорном бурте для установки шахты внутрикорпусной точка является значительным концентратором напряжений.

• Точки № 18 и 19 на внутренней поверхности наплавки в центрах канавок для прокладок.

Для остальных точек в наплавке условие циклической прочности выполняется. Для всех точек в основном и сварном металле условие циклической прочности выполняется с большим запасом.

Наибольшее накопленное усталостное повреждение получено для наплавки. Максимальное значение накопленного усталостного повреждения получено в области канавок (таблица 11). В этой области проходит огромное усилие от затяга шпилек (порядка 400 MH) через область с маленькой шириной (и впоследствии с маленькой плоскостью – порядка 100 000 мм²), что вызывает напряжения порядка ГПа. Для таких напряжений, учитывая также концентрацию напряжений в канавках, условие циклической прочности не может быть выполнено.

Причины значительного усталостного повреждения в наплавке (за исключением канавок) детально описаны в разделе 2.1.2. В наплавке также неблагоприятным образом отражаются концентраторы напряжения, именно в местах острых внутренних переходов, то есть, в нашем случае, в точках № 7 и 15. Усталостное повреждение максимальное на внутренней поверхности и быстро спадает по толщине наплавки при увеличении расстояния от поверхности. Это связано с тем, что концентратор напряжения возникает, прежде всего, на поверхности. На поверхности также возникает максимальное напряжение при быстрых переходных режимах. Таким образом, если бы потенциально возникли усталостные дефекты (трещины), то они начали бы возникать на внутренней поверхности стенки с последующим подростом в направлении внутрь наплавки.

Следует отметить, что требования к оценке циклической прочности наплавки, изложенные в ПНАЭ Г-7-002-86 [1], являются консервативными. Например, в соответствии с параграфом NB-3122.3 норм ASME [22] наплавку при оценке статической и циклической прочности (NB-3222.2 и NB-3222.4) можно не учитывать, если ее номинальная толщина составляет 10% (или меньше) от номинальной толщины изделия.

При эксплуатации в сверхпроектный период ЮУАЭС следует обратить внимание на области канавок ГРР и области концентраторов напряжений во фланце корпуса, для которых получены высокие значения накопленного усталостного повреждения (*a*>>1). В процессе эксплуатации состояние металла уплотнительных поверхностей и области концентраторов напряжений во фланце корпуса регулярно отслеживается в рамках Типовой программы периодического контроля ПМ-Т.0.03.061-04 (АИЭУ-9-04) [19]. Учитывая вышеизложенное, с целью мониторинга механизма усталостного повреждения уплотнительных поверхностей и области концентраторов напряжений во фланце корпуса при выполнении периодического контроля в период сверхпроектного срока эксплуатации, кроме применения методов

ВК и КК, ОП ЮУАЭС рекомендуется рассмотреть возможность использования аттестованного метода ВТК, что соответствует мировой практике [23].

Под наплавкой в основном материале, или же в материале сварного шва значение накопленного усталостного повреждения на два порядка ниже, чем в наплавке, поскольку вышеописанное неблагоприятное влияние на наплавку в этих материалах не проявляется. На наружной поверхности основного материала (сварного шва) накопленное усталостное повреждение незначительное.

2.3 Результаты расчетов циклической прочности патрубков ГЦТ и САОЗ

Расчеты циклической прочности патрубков ГЦТ и САОЗ для сверхпроектной эксплуатации выполнены с помощью такого же подхода и на основании такой же модели, как и для проектного срока [4].

Перечень расчетных состояний нагрузки для патрубков ГЦТ и САОЗ в таблице 47 отчета [4], в котором также в таблицах 52-53 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 и 5.9 [1] на основании сведений в [18, 24, 25] о методе сварки, термообработке и т.д. (см. таблицу 46 отчета [4]).

2.3.1 Точки, выбранные для оценки циклической прочности

Оценка циклической прочности проводится в 114 точках, которые приведены на рисунках 5-8. Для точек 11-36 в областях патрубков ГЦТ и САОЗ (рисунки 5-8) оцениваются по 4 точки в четырех плоскостях. Используемые плоскости для определения точек приведены на рисунке 9. Обозначение точек применено, например, как «точка 12 IV». Расчеты выполнены отдельно для зоны горячих патрубков и зоны холодных патрубков.

Оценка статической и циклической прочности элементов корпуса реактора на сверх проектный срок эксплуатации

32

Рисунок 5 – Расположение точек для оценки циклической прочности на обечайке корпуса реактора с патрубками ГЦТ и САОЗ

Рисунок 6 – Расположение точек для оценки циклической прочности на обечайке корпуса реактора в месте приварки рубашки САОЗ к наплавке

Рисунок 7 – Расположение точек для оценки циклической прочности на обечайке корпуса реактора в месте патрубка САОЗ

Рисунок 8 – Расположение точек для оценки циклической прочности на обечайке корпуса реактора в месте патрубка ГЦТ

Рисунок 9 – Обозначение плоскостей для определения точек в областях патрубков ГЦТ и САОЗ для оценки циклической прочности

2.3.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 14-21 (максимальные значения обозначены жирным шрифтом).

№ точки	Реальный материал	Материал заменитель для расчетов усталости	φ _s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
1	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,047930
4	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,059419
7	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,047396
10	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,115461
16 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,078829
16 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,067958
16 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,082376
16 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,065946
18 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,048243
18 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,044528
18 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,048097
18 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045288

Таблица 14 – Накопленное усталостное повреждение в области наплавки корпуса реактора и патрубков ГЦТ и САОЗ, модель горячих патрубков

№ точки	Реальный материал	Материал заменитель для расчетов усталости	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
20 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,052296
20 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,064086
20 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,053720
20 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,063829
21 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,021842
21 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,036889
21 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,023398
21 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,036543
22 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,028035
22 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,051121
22 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,027932
22 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,052456
23 I	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,077589
23 II	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,089324
23 III	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,081543
23 IV	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,084134
33 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045460
33 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,211734
33 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045244
33 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,205632
35 I	ЭА 898/21Б	ПТ-30	0,8	10	2	0,024167
35 II	ЭА 898/21Б	ПТ-30	0,8	10	2	0,026839
35 III	ЭА 898/21Б	ПТ-30	0,8	10	2	0,029337
35 IV	ЭА 898/21Б	ПТ-30	0,8	10	2	0,024506

Таблица 15 – Накопленное усталостное повреждение в области приварки рубашки патрубка САОЗ к корпусу реактора, модель горячих патрубков

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
11 I	Св-04Х19Н11М3	0,8	3,0	1,5	1,252109
11 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,897564
11 III	Св-04Х19Н11М3	0,8	3,0	1,5	1,189470
11 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,922347
12 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,538611
12 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,775314
12 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,531737

35

№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
12 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,791914
13 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,170903
13 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,149255
13 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,190906
13 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,146616
14 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,303584
14 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,283299
14 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,337906
14 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,212323
15 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,198136
15 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,193384
15 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,213366
15 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,193245

Таблица 16 – Накопленное усталостное повреждение в области под наплавкой корпуса реактора и патрубков ГЦТ и САОЗ, модель горячих патрубков

N⁰	Материал	ϕ_s	n _N	nσ	Накопленное усталостное повреждение
точки					(60 лет эксплуатации)
2	15Х2НМФА	-	10	2	0,000184
5	15Х2НМФА	-	10	2	0,000338
8	15Х2НМФА	-	10	2	0,000037
17 I	15Х2НМФА	-	10	2	0,000581
17 II	15Х2НМФА	-	10	2	0,001273
17 III	15Х2НМФА	-	10	2	0,000777
17 IV	15Х2НМФА	-	10	2	0,001535
19 I	15Х2НМФА	-	10	2	0,001139
19 II	15Х2НМФА	-	10	2	0,003869
19 III	15Х2НМФА	-	10	2	0,001353
19 IV	15Х2НМФА	-	10	2	0,004067
24 I	ЭА-400/10Т	0,8	10	2	0,033111
24 II	ЭА-400/10Т	0,8	10	2	0,029981
24 III	ЭА-400/10Т	0,8	10	2	0,028468
24 IV	ЭА-400/10Т	0,8	10	2	0,054447
34 I	15Х2НМФА	-	10	2	0,000052
34 II	15Х2НМФА	-	10	2	0,019044
34 III	15Х2НМФА	-	10	2	0,000060

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
34 IV	15Х2НМФА	-	10	2	0,017966
36 I	ПТ 30	0,6	10	2	0,040142
36 II	ПТ 30	0,6	10	2	0,015387
36 III	ПТ 30	0,6	10	2	0,032815
36 IV	ПТ 30	0,6	10	2	0,054986

Примечание. Для точек 24 и 36 оценка выполнена с учетом остаточных напряжений.

Таблица 17 – Накопленное усталостное повреждение на наружной поверхности
корпуса реактора и патрубков ГЦТ и САОЗ, модель горячих патрубков

№ точки	Материал	ϕ_{s}	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
3	15Х2НМФА	-	10	2	0,000018
6	15Х2НМФА	-	10	2	0,000812
9	15Х2НМФА	-	10	2	0,000943
25 I	ЭА 395/9	0,8	10	2	0,125966
25 II	ЭА 395/9	0,8	10	2	0,061847
25 III	ЭА 395/9	0,8	10	2	0,092809
25 IV	ЭА 395/9	0,8	10	2	0,187153
26 I	PT-45A	0,6	10	2	0,091133
26 II	PT-45A	0,6	10	2	0,067638
26 III	PT-45A	0,6	10	2	0,069419
26 IV	PT-45A	0,6	10	2	0,078321
27 I	PT-45A	0,6	10	2	0,106889
27 II	PT-45A	0,6	10	2	0,078794
27 III	PT-45A	0,6	10	2	0,079757
27 IV	PT-45A	0,6	10	2	0,086476
28 I	PT-45A	0,6	10	2	0,107171
28 II	PT-45A	0,6	10	2	0,083789
28 III	PT-45A	0,6	10	2	0,077452
28 IV	PT-45A	0,6	10	2	0,090495
29 I	15Х2НМФА	-	10	2	0,000999
29 II	15Х2НМФА	-	10	2	0,000009
29 III	15Х2НМФА	-	10	2	0,000475
29 IV	15Х2НМФА	-	10	2	0,000033
30 I	15Х2НМФА	-	10	2	0,000045
30 II	15Х2НМФА	-	10	2	0,000876
30 III	15Х2НМФА	-	10	2	0,000013

Изменение

38

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
30 IV	15Х2НМФА	-	10	2	0,000831
31 I	ПТ 30	0,6	10	2	0,048028
31 II	ПТ 30	0,6	10	2	0,025277
31 III	ПТ 30	0,6	10	2	0,038718
31 IV	ПТ 30	0,6	10	2	0,090319
32 I	ПТ 30	0,6	10	2	0,037357
32 II	ПТ 30	0,6	10	2	0,035872
32 III	ПТ 30	0,6	10	2	0,030426
32 IV	ПТ 30	0,6	10	2	0,094024

Примечание. Для точек 25-28, 31-32 оценка выполнена с учетом остаточных напряжений.

Таблица 18 – Накопленное усталостное повреждение в области наплавки корпуса реактора и патрубков ГЦТ и САОЗ, модель холодных патрубков

Ê	17					II
10	n v	Материал				накопленное
N⁰	Реальный	заменитель для	Øs	n _N	nσ	усталостное
точки	материал	расчетов усталости	1.5	1	0	повреждение
		1 5				(60 лет эксплуатации)
1	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,032974
4	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045586
7	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,036829
10	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,089097
16 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,070364
16 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,05177
16 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,055173
16 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,051524
18 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,039939
18 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,030917
18 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,033509
18 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,035724
20 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,04064
20 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045149
20 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,037521
20 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,045727
21 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,015869
21 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,027104
21 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,026021
21 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,027038
22 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,021819
22 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,037342
22 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,022163
22 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,03733

Оценка статической и циклической прочности элементов корпуса реактора на сверх проектный срок эксплуатации

39

Изменение

№ точки	Реальный материал	Материал заменитель для расчетов усталости	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
23 I	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,043732
23 II	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,052687
23 III	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,156117
23 IV	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,060494
33 I	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,032876
33 II	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,171205
33 III	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,032115
33 IV	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,165729
35 I	ЭА 898/21Б	ПТ-30	0,8	10	2	0,014672
35 II	ЭА 898/21Б	ПТ-30	0,8	10	2	0,015186
35 III	ЭА 898/21Б	ПТ-30	0,8	10	2	0,014037
35 IV	ЭА 898/21Б	ПТ-30	0,8	10	2	0,015744

Таблица 19 – Накопленное усталостное повреждение области приварки рубашки патрубка САОЗ к корпусу реактора, модель холодных патрубков

№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
11 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,98525
11 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,645089
11 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,702563
11 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,621302
12 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,395494
12 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,544661
12 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,298651
12 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,515133
13 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,12631
13 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,100807
13 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,128039
13 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,092725
14 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,239831
14 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,165437
14 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,241386
14 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,152189
15 I	Св-04Х19Н11М3	0,8	3,0	1,5	0,155343
15 II	Св-04Х19Н11М3	0,8	3,0	1,5	0,143802
15 III	Св-04Х19Н11М3	0,8	3,0	1,5	0,132533
15 IV	Св-04Х19Н11М3	0,8	3,0	1,5	0,139439

Таблица 20 – Накопленное усталостное повреждение в области под наплавкой корпуса реактора и патрубков ГЦТ и САОЗ, модель холодных патрубков

№ точки	Материал	ϕ_s	n _N	nσ	Накопленное усталостное повреждение (60 лет эксплуатации)
2	15Х2НМФА	-	10	2	0,000058
5	15Х2НМФА	-	10	2	0,000123
8	15Х2НМФА	_	10	2	0,000001
17 I	15Х2НМФА	-	10	2	0,000108
17 II	15Х2НМФА	-	10	2	0,000453
17 III	15Х2НМФА	-	10	2	0,000167
17 IV	15Х2НМФА	-	10	2	0,000454
19 I	15Х2НМФА	-	10	2	0,000224
19 II	15Х2НМФА	-	10	2	0,002403
19 III	15Х2НМФА	-	10	2	0,000292
19 IV	15Х2НМФА	-	10	2	0,001809
24 I	ЭА-400/10Т	0,8	10	2	0,420805
24 II	ЭА-400/10Т	0,8	10	2	0,038051
24 III	ЭА-400/10Т	0,8	10	2	0,258676
24 IV	ЭА-400/10Т	0,8	10	2	0,029667
34 I	15Х2НМФА	-	10	2	0,000001
34 II	15Х2НМФА	-	10	2	0,015812
34 III	15Х2НМФА	-	10	2	0,000001
34 IV	15Х2НМФА	-	10	2	0,014425
36 I	ПТ 30	0,6	10	2	0,036845
36 II	ПТ 30	0,6	10	2	0,036522
36 III	ПТ 30	0,6	10	2	0,031601
36 IV	ПТ 30	0,6	10	2	0,025363

Примечание. Для точек 24 и 36 оценка выполнена с учетом остаточных напряжений.

Таблица 21 – Накопленное усталостное повреждение на наружной поверхности корпуса реактора и патрубков ГЦТ и САОЗ, модель холодных патрубков

No					Накопленное усталостное
л≌ точки	Материал	ϕ_s	n _N	n_{σ}	повреждение
10 IKI					(60 лет эксплуатации)
3	15Х2НМФА	-	10	2	0,00009
6	15Х2НМФА	-	10	2	0,000965
9	15Х2НМФА	-	10	2	0,0011
25 I	04X19H11M3	0,8	10	2	0,637814
25 II	04X19H11M3	0,8	10	2	0,09114
25 III	04X19H11M3	0,8	10	2	0,511948
25 IV	04X19H11M3	0,8	10	2	0,069593
26 I	08ΧΓΗΜΤΑ	0,6	10	2	0,108673
26 II	08ΧΓΗΜΤΑ	0,6	10	2	0,067504
26 III	08ΧΓΗΜΤΑ	0,6	10	2	0,046794
26 IV	08ΧΓΗΜΤΑ	0,6	10	2	0,059912
27 I	08ΧΓΗΜΤΑ	0,6	10	2	0,121763
27 II	08ΧΓΗΜΤΑ	0,6	10	2	0,075225
27 III	08ΧΓΗΜΤΑ	0,6	10	2	0,053334
27 IV	08ΧΓΗΜΤΑ	0,6	10	2	0,068814
28 I	08ΧΓΗΜΤΑ	0,6	10	2	0,11696
28 II	08ΧΓΗΜΤΑ	0,6	10	2	0,08022
28 III	08ΧΓΗΜΤΑ	0,6	10	2	0,055245
28 IV	08ΧΓΗΜΤΑ	0,6	10	2	0,072988
29 I	15Х2НМФА	-	10	2	0,001262
29 II	15Х2НМФА	-	10	2	0,000247
29 III	15Х2НМФА	-	10	2	0,00056
29 IV	15Х2НМФА	-	10	2	0,00008
30 I	15Х2НМФА	-	10	2	0,000023
30 II	15Х2НМФА	-	10	2	0,000018
30 III	15Х2НМФА	-	10	2	0,00003
30 IV	15Х2НМФА	-	10	2	0,00002
31 I	ПТ 30	0,6	10	2	0,046341
31 II	ПТ 30	0,6	10	2	0,069587
31 III	ПТ 30	0,6	10	2	0,03563
31 IV	ПТ 30	0,6	10	2	0,020203
32 I	ПТ 30	0,6	10	2	0,036463
32 II	ПТ 30	0,6	10	2	0,032477
32 III	ПТ 30	0,6	10	2	0,031682
32 IV	ПТ 30	0,6	10	2	0,0093

Примечание. Для точек 25-28 и 31-32 оценка выполнена с учетом остаточных напряжений.

Для всех оцениваемых точек условие циклической прочности выполняется, за исключением точек 11 I и 11 III в области горячих патрубков, где накопленное усталостное повреждение незначительно превышает допустимое значение. Точка 11 находится в области приварки рубашки патрубка САОЗ к наплавке КР. Большое усталостное повреждение в ней возникает, прежде всего, по причине разных значений коэффициента линейного расширения материала рубашки и КР.

Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_{σ} и n_N , а также консервативно низкие значения механических свойств материала и др.), удовлетворительные результаты контроля области приварки рубашки патрубка САОЗ к корпусу реактора за прошедший период эксплуатации, ОП ЮУАЭС рекомендуется в рамках выполнения периодического контроля металла в сверхпроектный период руководствоваться требованиями к периодичности, методам и объему контроля, установленным в Типовой программе АИЭУ-9-04 [19].

Следующей точкой со значительным накопленным усталостным повреждением (но непревышающим допускаемое значение) является точка 25, находящаяся на наружной поверхности сварного шва приварки трубопровода САОЗ к патрубку. Причиной высокого усталостного повреждения в ней является большой изгибающий момент вокруг вертикальной оси со стороны трубопровода САОЗ (а именно трубопровода САОЗ ТН52) от его температурного расширения.

Для остальных точек в основном металле КР и в остальных сварных швах условие циклической прочности выполняется с большим запасом.

2.4 Результаты расчетов циклической прочности патрубка КИП

Расчеты циклической прочности патрубка КИП для сверхпроектного периода эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [5].

Перечень расчетных состояний нагрузки для патрубка КИП приведены в таблице 18 отчета [5], в котором также в таблице 19 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в [18, 26] о методе сварки, термообработке и т.д. (см. таблицу 16 отчета [5]).

2.4.1 Точки, выбранные для оценки циклической прочности

Расчеты циклической прочности проведены в 31 выбранной точке в наплавке (на внутренней поверхности), в основном материале (вблизи наплавки и на наружной поверхности), в сварных швах (вблизи наплавки) и в защитной крышке. Расположение оцениваемых точек изображено на рисунках 10-14.

Для точек 8 и 11 циклическая прочность оценивается отдельно для материалов 1-го и 2-го слоя. Результаты оценки накопленного усталостного повреждения для точек в материале 2-го слоя обозначены звездочкой (т.е. точки 8*, 11*).

Рисунок 10 – Расположение точек в патрубке КИП (в патрубке уровнемера и патрубке со штуцерами), выбранных для расчета на циклическую прочность

Рисунок 11 – Расположение точек в патрубке КИП (в зоне приварки патрубка к КР), выбранных для расчета на циклическую прочность

Рисунок 12 – Расположение точек в патрубке КИП (в защитной крышке), выбранных для расчета на циклическую прочность

Рисунок 13 – Расположение точек в патрубке КИП (в защитной крышке), выбранных для расчета на циклическую прочность

Рисунок 14 – Расположение точек в КР в области патрубка КИП, выбранных для расчета на циклическую прочность

2.4.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблице 22 (максимальные значения обозначены жирным шрифтом).

No	Реальный	Материал для				Накопленное усталостное
л≞ точки	материал	расчетов	ϕ_s	n _N	n_{σ}	повреждение
10 IKH	Marephan	усталости				(60 лет эксплуатации)
1	08X18H10T	08X18H10T	-	10	2	0,004362
2	08X18H10T	08X18H10T	-	10	2	0,095457
3	08X18H10T	08X18H10T	-	10	2	0,144329
4	08X18H10T	08X18H10T	-	10	2	0,006968
5	08X18H10T	08X18H10T	I	10	2	0,003981
6	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	0,024355
7	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	0,012945
8	ЭА-395/9	ЭА-395/9	1,0	10	2	0,133122
8*	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	0,069835
9	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,007098
10	ЭА 898/21Б	ЭА-400/10Т	0,8	10	2	0,003538
11	ЭА-395/9	ЭА-395/9	1,0	10	2	0,123625
11*	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	0,064899
12	15Х2НМФА	15Х2НМФА	-	10	2	0,001538
13	15Х2НМФА	15Х2НМФА	-	10	2	0,001294
14	PT-45A	PT-45A	1,0	10	2	0,013964
15	ЭА 898/21Б	PT-45A	0,8	10	2	0,031344
16	ЭА 898/21Б	PT-45A	0,8	10	2	0,019094
17	PT-45A	PT-45A	1,0	10	2	0,006633
18	15Х2НМФА	15Х2НМФА	-	10	2	0,014941
19	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,184079
20	ЭА 898/21Б	15Х2НМФА	0,8	10	2	0,009269
21	15Х2НМФА	15Х2НМФА	-	10	2	0,000001
22	Св-04Х20Н10Г2Б	15Х2НМФА	0,8	10	2	0,018174
23	15Х2НМФА	15Х2НМФА	-	10	2	0,00018
24	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,068169
25	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,032244
26	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,118263
27	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,639007
28	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,118821
29	Св-04Х19Н11М3	Св-04Х19Н11М3	1,0	3	1,5	0,016136
30	08X18H10T	08X18H10T	-	3	1,5	0,133393
31	08X18H10T	08X18H10T	_	3	1,5	0,015558

Таблица 22 – Накопленное усталостное повреждение в патрубке КИП

Примечание. Для точек 6, 7, 8, 11, 14, 17, 29 оценка выполнена с учетом остаточных напряжений.

Для всех оцениваемых точек условие циклической прочности выполняется.

Максимальное накопленное повреждение (непревышающее допустимое значение) получено в точке № 27 в угле приварки защитной крышки к наплавке КР. Причиной значительного усталостного повреждения в наплавке являются высокие напряжения В наплавке при температуре, отличающейся ОТ температуры ненапряженного состояния, по причине разницы коэффициентов линейного расширения аустенитних деталей (наплавка, защитная крышка и ее приварка) и основного материала КР. Таким образом, каждое, хотя и медленное, изменение температуры вносит значительный вклад в усталостное повреждение материала аустенитних деталей. Также на внутреннюю поверхность неблагоприятно влияют напряжения от быстрых изменений температуры.

Для мониторинга механизма усталости в сверхпроектный период рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля патрубка КИП, в том числе и сварного шва приварки защитной крышки к наплавке корпуса реактора, руководствоваться требованиями Типовой программы АИЭУ-9-04 [19].

Под наплавкой в основном материале, или же в материале сварного шва значение накопленного усталостного повреждения гораздо ниже, чем в наплавке, поскольку вышеописанное неблагоприятное влияние на наплавку в этих материалах не проявляется. На наружной поверхности основного материала (сварного шва) накопленное усталостное повреждение незначительное.

2.5 Результаты расчетов циклической прочности фланцевого соединения патрубка СУЗ

Расчеты циклической прочности фланцевого соединения патрубка СУЗ для сверхпроектного периода эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [6].

Перечень расчетных состояний нагрузки для фланцевого соединения патрубка СУЗ приведены в таблице 26 отчета [6], в котором также в таблице 27 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспорте [21] о методе сварки, термообработке и т.д. (см. таблицу 24 отчета [6]).

2.5.1 Точки, выбранные для оценки циклической прочности

Расчет циклической прочности выполнен в выбранных точках в патрубке СУЗ, включая точки в наплавке, в рубашке и в обоих фланцах, а также в шпильке (для стержня и резьбы). Расположение оцениваемых точек, приведено на рисунке 15.

Рисунок 15 – Расположение точек для оценки циклической прочности (точки, которые находятся в элементах, изготовленных из стали 20 обозначены шрифтом голубого цвета, 08Х18Н10Т – шрифт белого цвета, 38ХН3МФА –шрифт зеленого цвета, ЗИО-8 –шрифт желтого цвета)

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 23-27 (максимальные значения обозначены жирным шрифтом).

	5		1		
Точка	Коэффициент K_{σ}	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
стержень шпильки	1,00	I	5	1,5	0,0000020
верхний резьбовой	4 62	-	5	15	0 9048480
участок шпильки	7,02		5	1,5	0,7040400
нижний резьбовой	2 69	_	5	15	0.0795360
участок шпильки	2,07	-	5	1,5	0,0775500

Таблица 23 – Накопленное усталостное повреждение в шпильке

Из результатов оценки циклической прочности приведенных в таблице 23, следует, что условие циклической прочности стержня и резьбовых участков шпильки выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС.

				<u> </u>	
<u>№</u> точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
1	08X18H10T	-	3	1,5	0,002658
2	08X18H10T	-	3	1,5	0,002318
3	08X18H10T	-	3	1,5	0,004737
26	08X18H10T	-	3	1,5	1,523629
27	08X18H10T	-	3	1,5	0,025182
28	08X18H10T	-	3	1,5	0,019265
29	08X18H10T	-	3	1,5	0,002187

Таблица 24 – Накопленное усталостное повреждение в рубашке

Таблица 25 – Накопленное усталостное повреждение в наплавке и сварном шве присоединения рубашки к наплавке

№ точки	Материал	φs	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
22	ЗИО-8	0,8	10	2	0,529963
23	ЗИО-8	0,8	10	2	0,146967
30	3ИО-8	0,8	10	2	0,807474
31	ЗИО-8	0,8	10	2	0,304390
32	3ИО-8	0,8	10	2	0,006298
33	ЗИО-8	0,8	10	2	0,371792
34	ЗИО-8	0,8	10	2	0,027947
35	ЗИО-8	0,8	10	2	0,518885
36	ЗИО-8	0,8	10	2	11,213450

Примечание. Поскольку в этом сварном шве максимальная амплитуда условного упругого напряжения превышает предел текучести при 20°С, то в соответствии с п. 5.6.10 норм ПНАЭ Г-7-002-86 [1] остаточные напряжения в сварном шве не учитываются.

Габлица 26 – Накопленное	усталостное повреждение	в патрубке СУЗ и его о	фланце
			1

№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
4	20	-	10	2	0,003295
5	20	1	10	2	0,000016
6	20	-	10	2	0,000005
7	20	-	10	2	0,004266
8	20	-	10	2	0,000023
9	20	-	10	2	0,000000
24	20	-	10	2	0,001357
25	20	-	10	2	0,010130

Таблица 27 – Накопленное усталостное повреждение во фланце чехла

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
10	08X18H10T	-	10	2	0,000000
11	08X18H10T	-	10	2	0,000000
12	08X18H10T	-	10	2	0,000000
13	08X18H10T	-	10	2	0,000000
14	08X18H10T	-	10	2	0,000045
15	08X18H10T	-	10	2	0,000001
16	08X18H10T	-	10	2	0,000001
17	08X18H10T	-	10	2	0,000000
18	08X18H10T	-	10	2	0,001460
19	08X18H10T	-	10	2	0,052002
21	08X18H10T	-	10	2	0,002935

Из результатов оценки циклической прочности, приведенных в таблицах 24-27, следует, что условие циклической прочности не выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для точек № 26 (рубашка вблизи сварного шва) и № 36 (на внутренней поверхности наплавки в области ее нижнего буртика вблизи сварного присоединения рубашки). Точка № 26 лежит вблизи сингулярности поля напряжений, точка № 36 лежит в области со значительным концентратором напряжений.

Для остальных точек (включая точки в рубашке и наплавке) условие циклической прочности выполняется.

Наибольшее накопленное усталостное повреждение получено для наплавки. Причиной значительного усталостного повреждения в наплавке являются высокие напряжения в наплавке при температуре, отличающейся от температуры ненапряженного состояния, по причине разницы коэффициентов линейного

расширения наплавки и основного материала. Таким образом, каждое, хотя и медленное, изменение температуры вносит значительный вклад в усталостное повреждение материала наплавки. В наплавке также неблагоприятным образом отражаются концентраторы напряжения, именно в местах острых внутренних переходов, то есть, в нашем случае, в точке № 36. В этой точке определено максимальное значение накопленного усталостного повреждения. Ухудшению результатов способствует также коэффициент снижения усталостной прочности в сварном шве и наплавке ϕ_s .

Следует отметить, что требования к оценке циклической прочности наплавки, изложенные в ПНАЭ Г-7-002-86 [1], являются консервативными. Например, в соответствии с параграфом NB-3122.3 норм ASME [22] наплавку при оценке статической и циклической прочности (NB-3222.2 и NB-3222.4) можно не учитывать, если ее номинальная толщина составляет 10% (или меньше) от номинальной толщины изделия.

Кроме того, невыполнение условия циклической прочности не означает непременное возникновение дефектов в области, для которых получено высокое накопленное усталостное повреждение. Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_o и n_N, и также консервативно низкие значения механических свойств материала и др.), положительные результаты контроля состояния металла за прошедший период эксплуатации, рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля В сверхпроектный период эксплуатации руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. При контроле состояния металла зон, для которых накопленное усталостное повреждение намного превышает допустимое значение, а именно: сварной шов приварки защитной рубашки патрубка СУЗ, в том числе область на расстоянии 50 мм от сварного шва, буртик и вертикальная часть наплавки от ОΠ уплотнительной поверхности, рекомендуется ЮУАЭС буртика ДО В сверхпроектный период эксплуатации рассмотреть возможность использования метода вихревых токов, что соответствует мировой практике.

Следующей областью с большим накопленным усталостным повреждением (хотя и не превышающим допускаемое значение) является сварной шов приварки рубашки к патрубку СУЗ (точки 22 и 30) включая рубашки вблизи сварного шва (точка 26). Учитывая тот факт, что состояние этих зон регулярно отслеживается в рамках Типовой программы АИЭУ-9-04 [19], и результаты контроля за весь период эксплуатации – положительны, периодический контроль выполнять в соответствии с установленными в АИЭУ-9-04 [19] требованиями. Следует отметить, что оценка циклической прочности не проводится для корня сварного шва, так как в поле напряжений в этой точке находится сингулярность.

Для всех точек в патрубке СУЗ и обоих фланцах значение накопленного усталостного повреждения гораздо ниже, чем в наплавке, поскольку вышеописанное неблагоприятное влияние на наплавку в этих материалах не проявляется.

2.6 Результаты расчетов циклической прочности фланцевого соединения патрубка КНИ

Расчеты циклической прочности фланцевого соединения патрубка КНИ для сверхпроектного срока эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [7].

Перечень расчетных состояний нагрузки для фланцевого соединения патрубка кни приведены в таблице 26 отчета [7], в котором также в таблице 27 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспорте [21] о методе сварки, термообработке и т.д. (см. таблицу 24 отчета [7]).

2.6.1 Точки, выбранные для оценки циклической прочности

Расчет циклической прочности выполнен в выбранных точках в патрубке КНИ, включая точки в наплавке, в рубашке и в обоих фланцах, а также в шпильке (для стержня и резьбы). Расположение оцениваемых точек, приведено на рисунке 16.

Рисунок 16 – Расположение точек для оценки циклической прочности (точки, которые находятся в элементах, изготовленных из стали 20 обозначены шрифтом голубого цвета, 08Х18Н10Т – шрифт белого цвета, 38ХН3МФА –шрифт зеленого цвета, ЗИО-8 –шрифт желтого цвета)

2.6.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 28-32 (максимальные значения обозначены жирным шрифтом).

Точка	Коэффициент K_{σ}	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)	
стержень шпильки	1,00	-	5	1,5	0,000020	
верхний резьбовой участок шпильки	4,62	-	5	1,5	0,876308	
нижний резьбовой участок шпильки	2,69	-	5	1,5	0,0753840	

Таблица 28 – Накопленное усталостное повреждение в шпильке

Из результатов оценки циклической прочности, приведенных в таблице 28, следует, что условие циклической прочности стержня и резьбовых участков шпильки выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС.

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
1	08X18H10T	-	3	1,5	0,0026610
2	08X18H10T	-	3	1,5	0,0023290
3	08X18H10T	-	3	1,5	0,0047410
26	08X18H10T	-	3	1,5	1,8135140
27	08X18H10T	-	3	1,5	0,0315630
28	08X18H10T	-	3	1,5	0,0193560
29	08X18H10T	-	3	1,5	0,0022120

Таблица 29 – Накопленное усталостное повреждение в рубашке

Таблица 30 – Накопленное усталост	тное повреждение в наплавке и сварном шве
присоединения рубашки к наплавке	2

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
16	ЗИО-8	0,8	10	2	0,1444040
17	ЗИО-8	0,8	10	2	0,1748470
18	ЗИО-8	0,8	10	2	0,5621460
19	ЗИО-8	0,8	10	2	1,4080170
22	ЗИО-8	0,8	10	2	0,7862440
23	ЗИО-8	0,8	10	2	0,1548880
30	ЗИО-8	0,8	10	2	0,2479580
31	ЗИО-8	0,8	10	2	0,0085000
32	ЗИО-8	0,8	10	2	0,0121540
33	ЗИО-8	0,8	10	2	0,2806280
34	ЗИО-8	0,8	10	2	0,0279280
35	ЗИО-8	0,8	10	2	0,5769300
36	ЗИО-8	0,8	10	2	9,8314960
37	ЗИО-8	0,8	10	2	0,1770200

Примечание. Поскольку в этом сварном шве максимальная амплитуда условного упругого напряжения превышает предел текучести при 20°С, то в соответствии с п. 5.6.10 норм ПНАЭ Г-7-002-86 [1] остаточные напряжения в сварном шве не учитываются.

			^		
№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
4	20	-	10	2	0,0033110
5	20	-	10	2	0,0000171
6	20	-	10	2	0,0000051
7	20	-	10	2	0,0043670
8	20	-	10	2	0,0000232
9	20	-	10	2	0,0000000
24	20	-	10	2	0,0014110
25	20	-	10	2	0,0108030

Таблица 31 – Накопленное усталостное повреждение в патрубке КНИ

-	2		1		1
№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
10	08X18H10T	-	10	2	0,0000000
11	08X18H10T	-	10	2	0,0000190
12	08X18H10T	-	10	2	0,000010
13	08X18H10T	-	10	2	0,0283040
14	08X18H10T	-	10	2	0,0000000
15	08X18H10T	-	10	2	0,0000000
21	08X18H10T	-	10	2	0,0002450
38	08X18H10T	-	10	2	0,0000000
39	08X18H10T	-	10	2	0,0026930

Таблица 32 – Накопленное усталостное повреждение во фланце КНИ

Из результатов оценки циклической прочности, приведенных в таблицах 29-32, следует, что условие циклической прочности не выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для точек № 26 (рубашка вблизи сварного шва), № 19 и № 36 (на внутренней поверхности наплавки в области ее нижнего буртика вблизи сварного присоединения рубашки). Точка № 26 лежит вблизи сингулярности поля напряжений, точки № 19 и № 36 лежат в области со значительным концентратором напряжений.

Как уже было отмечено в разделе 2.5.2, причиной значительного усталостного повреждения в наплавке являются высокие напряжения в наплавке при температуре, отличающейся от температуры ненапряженного состояния, по причине разницы коэффициентов линейного расширения наплавки и основного материала.

Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_o и n_N, и также консервативно низкие значения механических свойств материала и др.), положительные результаты контроля состояния металла за прошедший период эксплуатации, рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля в сверхпроектный период эксплуатации руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. При контроле состояния металла зон, для которых накопленное усталостное повреждение намного превышает допустимое значение, а именно сварной шов приварки защитной рубашки патрубка КНИ, в том числе область на расстоянии 50 мм от сварного шва, буртик и вертикальная часть наплавки от буртика до уплотнительной поверхности, рекомендуется ОП ЮУАЭС в сверхпроектный период эксплуатации рассмотреть возможность использования метода вихревых токов, что соответствует мировой практике.

Для остальных точек (включая точки в рубашке и наплавке) условие циклической прочности выполняется.

2.7 Результаты расчетов циклической прочности фланцевого соединения патрубка ТК

Расчеты циклической прочности фланцевого соединения патрубка ТК для сверхпроектного периода эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [8].

Перечень расчетных состояний нагрузки для нижней части корпуса реактора и для области кольца разделительного приведены в таблице 26 отчета [8], в котором также в таблице 27 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспорте [21] о методе сварки, термообработке и т.д. (см. таблицу 24 отчета [8]).

2.7.1 Точки, выбранные для оценки циклической прочности

Расчет циклической прочности выполнен в выбранных точках в патрубке ТК, включая точки в наплавке, в рубашке и в обоих фланцах, а также в шпильке (для стержня и резьбы). Расположение оцениваемых точек, приведено на рисунке 17.

Рисунок 17 – Расположение точек для оценки циклической прочности (точки, которые находятся в элементах, изготовленных из стали 20 обозначены шрифтом голубого цвета, 08Х18Н10Т – шрифт белого цвета, 38ХН3МФА –шрифт зеленого цвета, ЗИО-8 –шрифт желтого цвета)

2.7.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 33-37 (максимальные значения обозначены жирным шрифтом).

Точка	Коэффициент <i>К</i> _σ	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)	
стержень шпильки	1,00	-	5	1,5	0,000020	
верхний резьбовой участок шпильки	4,62	-	5	1,5	0,8794130	
нижний резьбовой участок шпильки	2,69	-	5	1,5	0,0756540	

Таблица 33 – Накопленное усталостное повреждение в шпильке

Из результатов оценки циклической прочности, приведенных в таблице 33, следует, что условие циклической прочности стержня и резьбовых участков шпильки выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС.

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
1	08X18H10T	-	3	1,5	0,0026580
2	08X18H10T	-	3	1,5	0,0023180
3	08X18H10T	-	3	1,5	0,0047370
26	08X18H10T	-	3	1,5	1,5237390
27	08X18H10T	-	3	1,5	0,026280
28	08X18H10T	-	3	1,5	0,0193750
29	08X18H10T	-	3	1,5	0,0022980

Таблица 34 – Накопленное усталостное повреждение в рубашке

Таблица 35 – Накопленное усталостное повреждение в наплавке и сварном шве присоединения рубашки к наплавке

№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
16	ЗИО-8	0,8	10	2	0,1425740
17	ЗИО-8	0,8	10	2	0,1722930
18	ЗИО-8	0,8	10	2	0,6917110
22	ЗИО-8	0,8	10	2	0,6869020
23	ЗИО-8	0,8	10	2	0,1469760
30	ЗИО-8	0,8	10	2	0,8084840
31	ЗИО-8	0,8	10	2	0,0290540
32	ЗИО-8	0,8	10	2	0,0107940

№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
33	ЗИО-8	0,8	10	2	0,286160
34	ЗИО-8	0,8	10	2	0,0259020
35	ЗИО-8	0,8	10	2	0,5748410
36	ЗИО-8	0,8	10	2	11,3871920
37	ЗИО-8	0,8	10	2	0,2338160

Примечание. Поскольку в этом сварном шве максимальная амплитуда условного упругого напряжения превышает предел текучести при 20°С, то в соответствии с п. 5.6.10 норм ПНАЭ Г-7-002-86 [1] остаточные напряжения в сварном шве не учитываются.

Таблица 36 – Накопленное усталостное повреждение в патрубке ТК

№ точки	Материал	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
4	20	-	10	2	0,0032950
5	20	-	10	2	0,0000160
6	20	-	10	2	0,0000050
7	20	-	10	2	0,0042660
8	20	-	10	2	0,0000230
9	20	-	10	2	0,0000000
24	20	-	10	2	0,0013690
25	20	-	10	2	0,0101410

Таблица 37 – Накопленное усталостное повреждение во фланце ТК

№ точки	Материал	ϕ_s	n _N	n_{σ}	Накопленное усталостное повреждение (60 лет эксплуатации)
10	08X18H10T	-	10	2	0,0018230
11	08X18H10T	-	10	2	0,0427850
12	08X18H10T	-	10	2	0,0006090
13	08X18H10T	-	10	2	0,0000160
14	08X18H10T	-	10	2	0,1434320
15	08X18H10T	-	10	2	0,0007380
19	08X18H10T	-	10	2	0,0023760
21	08X18H10T	-	10	2	0,000020

Из результатов оценки циклической прочности, приведенных в таблицах 34-37, следует, что условие циклической прочности не выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для точек № 26 (рубашка вблизи сварного шва) и № 36 (на внутренней поверхности наплавки в области ее нижнего буртика вблизи сварного присоединения рубашки). Точка № 26 лежит вблизи

Как уже было отмечено в разделе 2.5.2, причиной значительного усталостного повреждения в наплавке являются высокие напряжения в наплавке при температуре, отличающейся от температуры ненапряженного состояния, по причине разницы коэффициентов линейного расширения наплавки и основного материала.

Для остальных точек (включая точки в рубашке и наплавке) условие циклической прочности выполняется.

Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_o и n_N, и также консервативно низкие значения механических свойств материала и др.), положительные результаты контроля состояния металла за прошедший период эксплуатации, рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля в сверхпроектный период эксплуатации руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. При контроле состояния металла зон, для которых накопленное усталостное повреждение намного превышает допустимое значение, а именно сварной шов приварки защитной рубашки патрубка ТК, в том числе область на расстоянии 50 мм от сварного шва, буртик и наплавки от буртика до уплотнительной поверхности, вертикальная часть рекомендуется ОП ЮУАЭС в сверхпроектный период эксплуатации рассмотреть возможность использования метода вихревых токов, что соответствует мировой практике.

2.8 Результаты расчетов циклической прочности крышки с патрубками

Расчеты циклической прочности фланцевого соединения крышки с патрубками (СУЗ, ТК, КНИ и воздушника) для сверхпроектного срока эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [9].

Перечень расчетных состояний нагрузки крышки с патрубками приведены в таблице 25 отчета [9], в котором также в таблице 26 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

При оценке циклической прочности наплавки и сварных швов использованы коэффициенты снижения циклической прочности, принятые по таблице 5.8 [1] на основании сведений в паспорте [21] о методе сварки, термообработке и т.д. (см. таблицы 29, 30 отчета [9]).

2.8.1 Точки, выбранные для оценки циклической прочности крышки с патрубками СУЗ, ТК и КНИ

Расчеты циклической прочности для области соединения крышки с патрубками СУЗ, ТК и КНИ проведены в 83 выбранных точках в модели. Для области моделируемого патрубка оценка выполнена в 4 позициях по окружности патрубка, а именно в плоскостях I-IV, приведенных на рисунке 18. Во всех плоскостях оценка выполнена для 20 точек (см. рисунки 19 и 20). Дополнительно оценены 3 точки вне области моделируемого патрубка (рисунок 21). Следует отметить, что оценка циклической прочности не проводится ни для корня сварного шва приварки патрубка к крышке, ни для корня сварного шва приварки рубашки к патрубку, так как в полях напряжений в этих точках находится сингулярность.

Рисунок 18 – Вид сверху на моделируемый участок крышки с обозначением плоскостей для определения сечений для оценки статической прочности

Оценка статической и циклической прочности элементов корпуса реактора на сверх проектный срок эксплуатации

Рисунок 19 – Точки, выбранные для оценки циклической прочности в области сварного соединения патрубка и крышки и рубашки и патрубка

Рисунок 20 – Точки в отверстии в крышке (17, 18), в моделируемом патрубке (19) и в рубашке (20), выбранные для оценки циклической прочности

Рисунок 21 – Точки на крышке, выбранные для оценки циклической прочности

2.8.2 Результаты расчета циклической прочности крышки реактора с патрубками СУЗ, ТК и КНИ

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблице 38 (максимальные значения обозначены жирным шрифтом).

№ точки	№ плоскости	Реальный материал	Материал для расчетов усталости	ϕ_s	n _N	n _o	Накопленное усталостное повреждение (60 лет эксплуатации)
1	Ι	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	0,04997927
2	Ι	15Х2НМФА	15Х2НМФА	-	10	2	0,001359181
3	Ι	ЗИО-8	15Х2НМФА	0,8	10	2	0,009033564
4	Ι	ЗИО-8	15Х2НМФА	0,8	10	2	0,03746573
5	Ι	20	20	-	10	2	0,1952498
6	Ι	ЗИО-8	3ИО-8	0,8	10	2	4,357541
7	Ι	20	20	-	10	2	0,6759326
8	Ι	08X18H10T	08X18H10T	1	3	1,5	0,002673567
9	Ι	ЗИО-8	ЗИО-8	0,8	10	2	7,186134
10	Ι	ЭА-400/10Т	20	0,8	10	2	1,974794
11	Ι	ЭА-395/9	20	0,8	10	2	3,242778
12	Ι	ЭА-400/10Т	20	0,8	10	2	3,64806
13	Ι	08X18H10T	08X18H10T	-	3	1,5	1,625197
14	Ι	ЭА-400/10Т	ЭА-400/10T	0,8	3	1,5	2,721839

Таблица 38 – Накопленное усталостное повреждение в крышке реактора с патрубками

l							Наконном
No	No	Реальный	Материал				лакопленное
точки	плоскости	материал	для расчетов	ϕ_s	n_N	n_{σ}	поврежление
10 1111		······································	усталости				(60 лет эксплуатации)
15	Ι	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	2,130701
16	Ι	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	2,644567
17	Ι	15Х2НМФА	15Х2НМФА	-	10	2	0,003522511
18	Ι	15Х2НМФА	15Х2НМФА	-	10	2	0,000316368
19	Ι	20	20	-	10	2	4,32476E-05
20	Ι	08X18H10T	08X18H10T	-	3	1,5	1,63388E-05
1	II	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	0,04601
2	II	15Х2НМФА	15Х2НМФА	-	10	2	0,00241
3	II	ЗИО-8	15Х2НМФА	0,8	10	2	0,00699
4	II	ЗИО-8	15Х2НМФА	0,8	10	2	0,04647
5	II	20	20	-	10	2	0,03755
6	II	ЗИО-8	ЗИО-8	0,8	10	2	1,59243
7	II	20	20	-	10	2	0,13944
8	II	08X18H10T	08X18H10T	-	3	1,5	0,00381
9	II	ЗИО-8	ЗИО-8	0,8	10	2	4,22517
10	II	ЭА-400/10Т	20	0,8	10	2	1,04683
11	II	ЭА-395/9	20	0,8	10	2	1,63849
12	II	ЭА-400/10Т	20	0,8	10	2	1,55222
13	II	08X18H10T	08X18H10T	-	3	1,5	0,59299
14	II	ЭА-400/10Т	ЭА-400/10Т	1	3	1,5	0,97995
15	II	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	0,53899
16	II	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	0,51369
17	II	15Х2НМФА	15Х2НМФА	-	10	2	0,00761
18	II	15Х2НМФА	15Х2НМФА	-	10	2	0,01087
19	II	20	20	-	10	2	5,3E-06
20	II	08X18H10T	08X18H10T	-	3	1,5	9,3E-06
1	III	Св- 08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	0,06921
2	III	15Х2НМФА	15Х2НМФА	-	10	2	0,00049
3	III	ЗИО-8	15Х2НМФА	0,8	10	2	0,00614
4	III	ЗИО-8	15Х2НМФА	0,8	10	2	0,03371
5	III	20	20	-	10	2	0,00925
6	III	ЗИО-8	ЗИО-8	0,8	10	2	2,42949
7	III	20	20	-	10	2	0,09808
8	III	08X18H10T	08X18H10T	-	3	1,5	0,00094
9	III	ЗИО-8	ЗИО-8	0,8	10	2	3,11624
10	III	ЭА-400/10Т	20	0,8	10	2	0,76261
11	III	ЭА-395/9	20	0,8	10	2	1,95095
12	III	ЭА-400/10Т	20	0,8	10	2	2,12005
13	III	08X18H10T	08X18H10T	-	3	1,5	0,3002
14	III	ЭА-400/10Т	ЭА-400/10Т	1	3	1,5	2,06324

Изменение

			Материал				Накопленное
N⁰	N⁰	Реальный	лля расчетов	۵.	n _N	n _a	усталостное
точки	гочки плоскости	материал	усталости	42			повреждение
				0.0			(60 лет эксплуатации)
15	III	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	4,82616
16	III	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	1,55233
17	III	15Х2НМФА	15Х2НМФА	-	10	2	0,00335
18	III	15Х2НМФА	15Х2НМФА	-	10	2	6,6E-06
19	III	20	20	-	10	2	5,2E-05
20	III	08X18H10T	08X18H10T	-	3	1,5	1E-05
1	IV	Св-08Х19Н10Г2Б	15Х2НМФА	0,8	10	2	0,03936
2	IV	15Х2НМФА	15Х2НМФА	-	10	2	0,00319
3	IV	ЗИО-8	15Х2НМФА	0,8	10	2	0,00826
4	IV	ЗИО-8	15Х2НМФА	0,8	10	2	0,04359
5	IV	20	20	-	10	2	0,03889
6	IV	ЗИО-8	ЗИО-8	0,8	10	2	1,99182
7	IV	20	20	-	10	2	0,14639
8	IV	08X18H10T	08X18H10T	-	3	1,5	0,0046
9	IV	ЗИО-8	ЗИО-8	0,8	10	2	4,79372
10	IV	ЭА-400/10Т	20	0,8	10	2	1,09666
11	IV	ЭА-395/9	20	0,8	10	2	1,78943
12	IV	ЭА-400/10Т	20	0,8	10	2	1,84403
13	IV	08X18H10T	08X18H10T	-	3	1,5	0,59138
14	IV	ЭА-400/10Т	ЭА-400/10Т	1	3	1,5	1,00792
15	IV	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	0,57831
16	IV	ЭА-400/10Т	ЭА-400/10Т	0,8	3	1,5	0,52418
17	IV	15Х2НМФА	15Х2НМФА	-	10	2	0,00841
18	IV	15Х2НМФА	15Х2НМФА	-	10	2	0,01318
19	IV	20	20	-	10	2	5,2E-06
20	IV	08X18H10T	08X18H10T	-	10	1,5	9,4E-06
21		15Х2НМФА	15Х2НМФА	-	10	2	0,02054
22		15Х2НМФА	15Х2НМФА	-	10	2	0,01628
23		15Х2НМФА	15Х2НМФА	-	10	2	0,00768

Из результатов оценки циклической прочности, приведенных в таблице 38, следует, что условие циклической прочности не выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для наплавки на торце патрубка и для сварного соединения рубашки с патрубком и сварного соединения патрубка с крышкой (точки № 6, 9-16), по крайней мере, для некоторых оцениваемых плоскостей. Максимальное накопленное усталостное повреждение получено в сварном соединении патрубка с крышкой в точке № 9 в плоскости I и составляет 7,18613. Следует отметить, что хотя в сварном шве приварки рубашки к патрубку (точки 14-16) получены более высокие напряжения, чем в сварном соединении

Изменение

патрубка с крышкой, однако в сварном соединении патрубка с крышкой получено более высокое накопленное усталостное повреждение по причине использования более высоких коэффициентов запаса прочности.

Из результатов оценки циклической прочности, приведенных в таблице 38, следует, что для всех оцениваемых точек в основном металле крышки, патрубка и рубашки условие циклической прочности выполняется. Для всех точек в основном металле крышки условие циклической прочности выполняется с большим запасом.

Наибольшее накопленное усталостное повреждение получено для аустенитних элементов (наплавки, сварные швы, рубашка). Причиной значительного усталостного повреждения в этих элементах являются высокие напряжения при температуре, отличающейся от температуры ненапряженного состояния, по причине разницы коэффициентов линейного расширения аустенитных элементов и основного материала. Похожим образом (по причине разницы коэффициентов линейного расширения материалов рубашки и патрубка) появляется осевое напряжение в патрубке при температуре, отличающейся от температуры приварки рубашки к патрубку, которое также нагружает сварной шов приварки рубашки к патрубку. Таким образом, каждое, хотя и медленное, изменение температуры вносит значительный вклад в усталостное повреждение материала наплавки и сварных швов. В области приварки патрубка к крышке, а именно приварки рубашки к патрубку, также неблагоприятное влияние оказывает наличие концентратора напряжения в области внутренней грани отверстия в крышке. Ухудшению результатов способствует также коэффициент снижения усталостной прочности в сварных швах и наплавке $\phi_{s} = 0,8.$

Следует отметить, что требования к оценке циклической прочности наплавки, изложенные в ПНАЭ Г-7-002-86 [1], являются консервативными. Например, в соответствии с параграфом NB-3122.3 норм ASME [22] наплавку при оценке статической и циклической прочности (NB-3222.2 и NB-3222.4) можно не учитывать, если ее номинальная толщина составляет 10% (или меньше) от номинальной толщины изделия.

Кроме того, невыполнение условия циклической прочности не означает непременное возникновение дефектов в области, для которых получено высокое накопленное усталостное повреждение. Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_o и n_N, и также консервативно низкие значения механических свойств материала и др.), положительные результаты контроля состояния металла за прошедший период эксплуатации, рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля В сверхпроектный период эксплуатации руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. В сверхпроектный период эксплуатации при контроле

состояния металла области соединения патрубков СУЗ, ТК и КНИ с крышкой реактора рекомендуется рассмотреть возможность совместного использования метода вихревых токов и ультразвукового контроля.

2.8.3 Точки, выбранные для оценки напряжений крышки реактора с патрубком воздушника

Расчеты циклической прочности проведены в 9 выбранных точках в модели крышки с патрубком воздушника. Для области моделируемого патрубка воздушника оценка выполнена в 4 позициях по окружности патрубка, а именно в плоскостях I-IV приведенных на рисунке 22. Во всех плоскостях оценка выполнена для 2-х точек (см. рисунок 23). Дополнительно оценена 1 точка вне области моделируемого патрубка (см. рисунок 24). Следует отметить, что оценка циклической прочности не проводится ни для корня сварного шва приварки патрубка к крышке, так как в полях напряжений в этой точке находится сингулярность.

Рисунок 22 – Размещение плоскостей, выбранных для оценки циклической прочности в области сварного соединения приварки патрубка воздушника к крышке

Рисунок 23 – Размещение точек, выбранные для оценки циклической прочности в области сварного соединения приварки патрубка воздушника к крышке

Рисунок 24 – Размещение точки, выбранной для оценки циклической прочности в области трубопровода воздушника между крышкой реактора и фланцем воздушника

2.8.4 Результаты расчета циклической прочности крышки реактора с патрубком воздушника

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблице 39 (максимальные значения обозначены жирным шрифтом).

№ точки	№ плоскости	Реальный материал	Материал для расчетов усталости	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)
24	Ι	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	3,54
24	II	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	1,10
24	III	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	14,60
24	IV	ЭА-400/10Т	ЭА-400/10Т	0,8	10	2	1,11
25	Ι	08X18H10T	08X18H10T	-	10	2	8,97
25	II	08X18H10T	08X18H10T	-	10	2	2,35
25	III	08X18H10T	08X18H10T	-	10	2	3,49
25	IV	08X18H10T	08X18H10T	-	10	2	2,32
26		08X18H10T	08X18H10T	-	10	2	ниже 10 ⁻⁷

Таблица 39 – Накопленное усталостное повреждение в крышке реактора с присоединенным патрубком воздушника

Из результатов оценки циклической прочности, приведенных в таблице 39, следует, что условие циклической прочности не выполняется для 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС для сварного шва приварки патрубка воздушника к крышке и для основного металла патрубка воздушника (на внутренней проверхности патрубка) в области этой приварки. Максимальное накопленное усталостное повреждение получено на внутренней поверхности крышки в сварном шве в точке 24 в плоскости III (т.е. по направлению к фланцу крышки) и достигает значения 14,6.

В самом патрубке воздушника (в точке отдаленной от сварного шва) условие циклической прочности выполняется с большим запасом.

Причиной значительного усталостного повреждения в области сварного шва являются высокие напряжения при температуре, отличающейся от температуры ненапряженного состояния, по причине разницы коэффициентов линейного расширения основного метала патрубка воздушника (включая металла сварного шва) и основного материала крышки. Таким образом, каждое, хотя и медленное, изменение температуры вносит значительный вклад в усталостное повреждение. В области приварки патрубка к крышке также неблагоприятное влияние оказывает наличие значительного концентратора напряжения, прежде всего в области по направлению к фланцу крышки (сечение III). Ухудшению результатов способствует также коэффициент снижения усталостной прочности в сварном шве $\phi_s = 0.8$.

Принимая во внимание консервативность расчетов (прежде всего используемые коэффициенты запаса прочности при определении допускаемой амплитуды напряжения n_{σ} и n_{N} , и также консервативно низкие значения механических свойств материала и др.), положительные результаты контроля состояния металла за прошедший период эксплуатации, рекомендуется ОП ЮУАЭС при выполнении периодического неразрушающего контроля в сверхпроектный период эксплуатации

руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. За прошедший период эксплуатации получены удовлетворительные результаты контроля [20]. В дальнейшем для выполнения контроля рекомендуется рассмотреть возможность совместного использования методов ВТК и УЗК.

2.9 Результаты расчетов циклической прочности фланцевого соединения патрубка воздушника

Расчеты циклической прочности фланцевого соединения патрубка воздушника для сверхпроектного срока эксплуатации выполнены с помощью такого же подхода, и на основании такой же модели, как и для проектного срока [10].

Перечень расчетных состояний нагрузки для нижней части корпуса реактора и для области кольца разделительного приведены в таблице 31 отчета [10], в котором также в таблице 32 приведены конкретные расчетные состояния нагрузки, которыми реализовывается данный режим.

2.9.1 Точки, выбранные для оценки циклической прочности

Расчет циклической прочности выполнен в выбранных точках в патрубке воздушника, включая точки в обоих фланцах, а также в шпильке (для стержня и резьбы). Расположение оцениваемых точек, приведено на рисунке 25.

Оценка статической и циклической прочности элементов корпуса реактора на сверх проектный срок эксплуатации

Рисунок 25 – Расположение точек для оценки циклической прочности

Оцениваются две точки симметрично расположенные в плоскости сечения модели xz (осью симметрии является ось патрубка). В таком случае варианты точек обозначаются с дополненным символом «а» и «b», причем символ «а» использован для обозначения точек в половине модели с x > 0, и символ «b» использован для обозначения точек в половине модели с x < 0.

Коэффициенты снижения циклической прочности при оценке не учитываются, так как во фланцевом соединении нет ни сварных соединений, ни наплавок.

2.9.2 Результаты расчета циклической прочности

Результаты оценки циклической прочности для всех оцениваемых точек приведены в таблицах 40-42 (максимальные значения обозначены жирным шрифтом).

Точка	Коэффициент <i>К</i> _σ	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)	
					а	b
стержень шпильки	1,00	-	5	1,5	1,75100E-09	1,75100E-09
верхний резьбовой участок шпильки	5,13	-	5	1,5	0,0163920	0,0233740
нижний резьбовой участок шпильки	2,88	-	5	1,5	0,0000450	0,0001550

Таблица 40 – Накопленное усталостное повреждение в шпильке

Из результатов оценки циклической прочности, приведенных в таблице 40, следует, что условие циклической прочности стержня и резьбовых участков шпильки выполняется для прогноза на 60 лет эксплуатации энергоблока № 1 ОП ЮУАЭС.

Таблица 41 – Накопленное усталостное повреждение в патрубке воздушника в верхнем фланце

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 дет эксплуатации)
1 a	08X18H10T	-	10	2	2.21571E-07
1 b	08X18H10T	-	10	2	2.26297E-07
2 a	08X18H10T	-	10	2	7,01552E-08
2 b	08X18H10T	-	10	2	0,0000010
3 a	08X18H10T	-	10	2	1,75100E-09
3 b	08X18H10T	-	10	2	1,28900E-09
4 a	08X18H10T	-	10	2	1,59100E-09
4 b	08X18H10T	-	10	2	1,59650E-09
5 a	08X18H10T	-	10	2	0,0000300
5 b	08X18H10T	-	10	2	0,0000890
6 a	08X18H10T	-	10	2	0,0003280
6 b	08X18H10T	-	10	2	0,000040
7 a	08X18H10T	-	10	2	0,0000710
7 b	08X18H10T	-	10	2	0,0001080
8 a	08X18H10T	-	10	2	0,0105090
8 b	08X18H10T	-	10	2	0,0181860

№ точки	Материал	ϕ_s	n _N	n _σ	Накопленное усталостное повреждение (60 лет эксплуатации)		
10 a	08X18H10T	-	10	2	0,0051150		
10 b	08X18H10T	-	10	2	0,0007600		
11 a	08X18H10T	-	10	2	0,0304410		
11 b	08X18H10T	-	10	2	0,0129990		
12 a	08X18H10T	-	10	2	3,54846E-08		
12 b	08X18H10T	-	10	2	1,17913E-07		
13 a	08X18H10T	-	10	2	1,75100E-09		
13 b	08X18H10T	-	10	2	1,59100E-09		
14 a	08X18H10T	-	10	2	1,56000E-09		
14 b	08X18H10T	-	10	2	6,77189E-09		
15 a	08X18H10T	-	10	2	1,26600E-09		
15 b	08X18H10T	-	10	2	1,71000E-09		

Таблица 42 – Накопленное усталостное повреждение в нижнем фланце

Из результатов оценки циклической прочности, приведенных в таблицах 41-42, следует, что для оцениваемых точек условие циклической прочности выполняется.

В рамках работ по переназначению срока эксплуатации элементов корпуса, верхнего блока и главного разъема реактора энергоблока № 1 ОП ЮУАЭС на 60 лет выполнены расчеты циклической прочности.

Расчеты прочности выполнены согласно требованиям норм ПНАЭ Г-7-002-86 [1]. Результаты расчета статической прочности элементов реактора представлены в отчетах [2-10]. В соответствии с результатами в [2-10] статическая прочность элементов корпуса, верхнего блока и деталей узла уплотнения реактора обеспечивается.

В рамках данной работы выполнена оценка циклической прочности для следующих элементов корпуса реактора:

- цилиндрическая часть корпуса реактора, включая днище и кольцо разделительное;
- узел уплотнения реактора;
- патрубки ГЦТ и САОЗ;
- патрубок КИП;
- фланцевое соединение патрубка СУЗ;
- фланцевое соединение патрубка КНИ;
- фланцевое соединение патрубка ТК;
- крышка с патрубками СУЗ (ТК, КНИ) и воздушника;
- фланцевое соединение патрубка воздушника.

На основании анализа прошедших эксплуатационных режимов в [11] составлены блоки нагрузки элементов корпуса реактора за прошедший период эксплуатации, а также выполнен прогноз количества и последовательности эксплуатационных режимов на дальнейший сверхпроектный период эксплуатации (60 лет).

При расчете на циклическую прочность установлено, что во всех оцениваемых точках в основном или сварном металле накопленное усталостное повреждение не превышает допускаемую величину, за исключением сварного шва приварки патрубков СУЗ, ТК, КНИ и воздушника к крышке, сварного шва приварки рубашки к патрубку СУЗ, ТК и КНИ и основного металла патрубка воздушника в области его приварки к крышке.

ОП ЮУАЭС рекомендуется в сверхпроектный период эксплуатации при выполнении периодического контроля элементов корпуса, верхнего блока и деталей узла уплотнения главного разъема руководствоваться требованиями Типовой программы АИЭУ-9-04 [19]. Кроме того, предлагается в сверхпроектный срок рассмотреть возможность выполнения контроля состояния металла методом вихревых токов (зон, для которых существует техническая возможность выполнения

такого контроля) и методом ультразвука (при контроле наплавки на цилиндрической части кольца разделительного в области соприкасания с шахтой внутрикорпусной и области приварки патрубков к крышке реактора).

СПИСОК ЛИТЕРАТУРЫ

- 1 ПНАЭ Г -7-002-86 Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок, 1989
- 2 Пиштора В. и др. Расчеты на статическую и циклическую прочность корпуса реактора (кроме патрубков) // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.1 часть 2), DITI 301/516, 2011
- 3 Пиштора В. и др. Расчеты на статическую и циклическую прочность узла уплотнения реактора // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.3), DITI 2301/21, 2011
- 4 Пиштора В. и др. Расчеты на статическую и циклическую прочность патрубков ГЦТ и САОЗ // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 1), DITI 2301/39, 2010
- 5 Пиштора В. и др. Расчеты на статическую и циклическую прочность патрубка КИП // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 2), DITI 2301/40, 2010
- 6 Пиштора В. и др. Расчеты на статическую и циклическую прочность фланцевого соединения патрубка СУЗ // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 3), DITI 2301/41, 2010
- 7 Пиштора В. и др. Расчеты на статическую и циклическую прочность фланцевого соединения патрубка КНИ // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 4), DITI 2301/42, 2010
- 8 Пиштора В. и др. Расчеты на статическую и циклическую прочность фланцевого соединения патрубка ТК // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 5), DITI 2301/43, 2010
- 9 Пиштора В. и др. Расчеты на статическую и циклическую прочность крышки с патрубками // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 7), DITI 2301/45, 2010
- 10 Пиштора В. и др. Расчеты на статическую и циклическую прочность фланцевого соединения патрубка воздушника // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 4.3.4 часть 8), DITI 2301/46, 2010
- 11 Пиштора В. и др. Анализ условий эксплуатации реактора и связанных с ним систем // Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап № 3.1.3), DITI 301/494, 2010
- 12 Технологический регламент безопасной эксплуатации энергоблока № 1 ЮУ АЭС с реактором ВВЭР-1000 (В-302). РГ.1.3810.007. 2008 г.
- 13 Методика переназначения допустимого числа циклов нагружения и оценки технического состояния по прочности тепломеханического оборудования при циклических нагрузках. МТ-Т.0.08.155-07
- 14 Учет циклов нагружения ЯППУ и ее элементов энергоблока № 1 ЮУ АЭС. ОЧ.1.0010.134
- 15 Обобщенный анализ результатов испытаний образцов-свидетелей материалов корпуса реактора блока № 1 Южно-Украинской АЭС//Отчет ИЯИ НАНУ, Инв. № 300/26 9. 2008 г.

- 16 Корпус ядерного реактора 1162.02.00.200. Расчет прочности. 1162.02.00.200 РР2
- 17 Корпус 1162.02.70.010. Расчет прочности. 1162.02.70.010 РР11
- 18 Корпус сварной 1152.02.70.00. Паспорт. 1152.02.70.000 ПС
- 19 Типовая программа периодического контроля за состоянием основного металла, сварных соединений и наплавок оборудования и трубопроводов атомных электростанций с реакторами ВВЭР-1000. АИЭУ-9-04
- 20 Горачек Л. и др. Оценка результатов неразрушающего контроля состояния металла корпуса реактора, верхнего блока и определение механизмов старения// Отчет ИЯИ Ржеж по контракту № 02-2007 от 01.02.2008 (этап 3.1.4), DITI 300/360, 2010
- 21 1156.02.18.000 ПС. Верхний блок. (Крышка 1156.02.18.000 ПС) Паспорт.
- 22 ASME Boiler & Pressure Vessel Code, Section III
- 23 Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: PWR Pressure Vessels, IAEA, Vienna, TECDOC-1556, 2007
- 24 302.05.00.00.000СБ. Главный циркуляционный трубопровод. Сборочный чертеж
- 25 187-3378-000СБ. Трубопровод. Сборочный чертеж
- 26 Корпус сварной. Схема контроля сварных швов и наплавки. 1152.02.70.000ДЗ